Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1362-1371    DOI: 10.3724/SP.J.1037.2011.00383
  综述 本期目录 | 过刊浏览 |
负热膨胀反钙钛矿锰氮化合物的研究综述
宋晓艳, 孙中华
北京工业大学材料科学与工程学院新型功能材料教育部重点实验室, 北京 100124
REVIEW IN ANTIPEROVSKITE MANGANESE NITRIDES WITH NEGATIVE THERMAL EXPANSION PROPERTIES
SONG Xiaoyan, SUN Zhonghua
College of Materials Science and Engineering, Key Lab of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124
引用本文:

宋晓艳 孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报, 2011, 47(11): 1362-1371.
, . REVIEW IN ANTIPEROVSKITE MANGANESE NITRIDES WITH NEGATIVE THERMAL EXPANSION PROPERTIES[J]. Acta Metall Sin, 2011, 47(11): 1362-1371.

全文: PDF(1555 KB)  
摘要: 反钙钛矿结构锰氮化合物是近年发展起来的一类具有各向同性、负热膨胀系数及负热膨胀温度区间可调、金属性能及力学性能优良的新型负热膨胀材料, 展现出重要的应用潜力. 本文从负热膨胀材料的发展历史、化合物体系、制备方法、负热膨胀性能影响因素及微观机理等方面, 阐述了反钙钛矿结构锰氮化合物负热膨胀材料的研究现状及最新发展动态, 并对其发展前景进行了分析和展望.
关键词 负热膨胀零膨胀反钙钛矿结构锰氮化合物    
Abstract:Antiperovskite manganese nitrides are a group of negative thermal expansion (NTE) materials that have been developed rapidly in recent years. They exhibit important potential applications due to isotropic NTE property, controllable coefficient of NTE and NTE operation temperature window, and good metallic and mechanical properties. In this review, state of the arts and recent development in the field of studying antiperovskite manganese nitrides have been summarized and commented, which consist of introduction of history, classification, preparation approaches, influencing factors and mechanisms of NTE for such materials. The prospects are also described for antiperovskite manganese nitrides.
Key wordsnegative thermal expansion    zero thermal expansion    antiperovskite structure    manganese nitride
收稿日期: 2011-06-20     
基金资助:

国家重点基础发展计划项目2011CB612207和北京市自然科学基金项目2112006资助

作者简介: 宋晓艳, 女, 1970年生, 教授, 博士
[1] Roy R, Agrawal D K, Mckinstry H A. Annu Rev Mater Sci, 1989; 19: 59

[2] Phillips A E, Halder G J, Chapman K W, Goodwin A L, Kepert C J. J Am Chem Soc, 2010; 132: 10

[3] Yanase I, Miyagi M, Kobayashi H. J Eur Ceram Soc, 2009; 29: 3129

[4] Margadonna S, Prassides K, Fitch A N. J Am Chem Soc, 2004; 126: 15390

[5] Salvador J R, Gu F, Hogan T, Kanatzidis M G. Nature, 2003; 425: 702

[6] Ramirez I J, Matsumaru K, Ishizaki K. J Ceram Soc Jpn, 2006; 114: 1111

[7] Kim I J, Kim H C. J Ceram Process Res, 2004; 5: 308

[8] Hummel F A. J Am Ceram Soc, 1951; 51: 235

[9] Smith T F, White G K. J Phys, 1975; 8C: 2031

[10] White G K. J Phys, 1973; 6D: 2070

[11] Mary T A, Evans J S O, Vogt T, Sleight A W. Science, 1996; 272: 90

[12] Freiman Y A. Fizika Nizkikh Temp, 1983; 9: 657

[13] Wolf F P, Karl V H. Colloid Polym Sci, 1981; 259: 29

[14] Choy C L, Chen F C, Young K. J Polym Sci, 1981; 19B: 335

[15] Balch D K, Dunand D C. Metall Mater Trans, 2004; 35A: 1159

[16] Sonje P U, Subramanian K N, Lee A. J Adv Mater, 2004; 36: 22

[17] Sullivan L M, Lukehart C M. Chem Mater, 2005; 17: 2136

[18] Chu X X, Huang R J, Yang H H, Wu Z X, Lu J F, Zhou Y, Li L F. Mater Sci Eng, 2011; A528: 3367

[19] Yang X B, Xu J, Li H J, Cheng X N, Yan X H. J Am Ceram Soc, 2007; 90: 1953

[20] De Buysser K, Lommens P, De Meyer C, Bruneel E, Hoste S, Van Driessche I. Ceram Silik, 2004; 48(4): 139

[21] Suzuki T, Omote A. J Am Ceram Soc, 2006; 89: 691

[22] Kofteros M, Rodriguez S, Tandon V, Murr L E. Scr Mater, 2001; 45: 369

[23] Kumar P S, Kini N S, Umarji A M, Sunandana C S. J Mater Sci, 2006; 41: 3861

[24] Aerospace Materials Advisory Research Group. An Advisory Report on the Astronautic and Aeronautic Materials. Beijing: National Defence Industry Press, 1999: 128

(航空航天材料咨询研究组. 航空航天材料咨询学报. 北京: 国防工业出版社, 1999: 128)

[25] Wang C, Wang T M, Shen R, Liang J K. Physics, 2001; 30: 772

(王聪, 王天民, 沈 容, 梁敬魁. 物理, 2001; 30: 772)

[26] Sleight A W. Curr Opin Solid State Mater Sci, 1998; 3: 128

[27] Sleight A W. Annu Rev Mater Sci, 1998; 28: 29

[28] Steele B C H, Heinzel A. Nature, 2001; 414: 345

[29] Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J. Nat Nanotechnol, 2009; 4: 861

[30] Allen S, Evans J. Phys Rev, 2003; 68B: 134101

[31] Khosrovani K, Sleight A W, Vogt T. J Solid State Chem, 1997; 132: 355

[32] Amos T G, Sleight A W. J Solid State Chem, 2001; 160: 230

[33] Evans J, Mary T A, Sleight A W. J Solid State Chem, 1998; 137: 148

[34] Xing X R, Deng J X, Chen J, Liu G R. Rare Met, 2003; 22: 294

[35] Arvanitidis J, Papagelis K, Margadonna S, Prassides K, Fitch A N. Nature, 2003; 425: 599

[36] Wen Y C, Wang C, Sun Y, Nie M, Fang L, Tian Y J. Solid State Commun, 2009; 149: 1519

[37] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W, Wilkinson A P. J Am Chem Soc, 2010; 132: 15496

[38] Goodwin A L, Kepert C J. Phys Rev, 2005; 71B: 140301

[39] Takenaka K, Takagi H. Appl Phys Lett, 2005; 87: 261902

[40] Sun Y, Wang C, Wen Y C, Zhu K G, Zhao J T. Appl Phys Lett, 2007; 91: 231913

[41] Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N. Nat Nanotechnol, 2009; 4: 562

[42] Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J, Keen D A, Peters L, Tucker M G. Science, 2008; 319: 794

[43] Wu Y, Kobayashi A, Halder G J, Peterson V K, Chapman K W, Lock N, Southon P D, Kepert C J. Angew Chem Int Edit, 2008; 47: 8929

[44] Das D, Jacobs T, Barbour L J. Nat Mater, 2010; 9: 36

[45] Hao Y M, Zhao M, Zhou Y, Hu J F. Scr Mater, 2005; 53: 357

[46] Zheng X G, Kubozono H, Yamada H, Kato K, Ishiwata Y, Xu C N. Nat Nanotechnol, 2008; 3: 724

[47] Li W H, Wu S Y, Yang C C, Lai S K, Lee K C, Huang H L, Yang H D. Phys Rev Lett, 2002; 89: 135504

[48] Forster P M, Yokochi A, Sleight A W. J Solid State Chem, 1998; 140: 157

[49] Mary T A, Sleight A W. J Mater Res, 1999; 14: 912

[50] Forster P M, Sleight A W. Int J Inorg Mater, 1999; 1: 123

[51] Withers R L, Evans J, Hanson J, Sleight A W. J Solid State Chem, 1998; 137: 161

[52] Evans J, Hanson J C, Sleight A W. Acta Crystallogr, 1998; 54B: 705

[53] Attfield M P, Sleight A W. Chem Mater, 1998; 10: 2013

[54] Tao J Z, Sleight A W. J Phys Chem Solids, 2003; 64: 1473

[55] Evans J, Hu Z, Jorgensen J D, Argyriou D N, Short S, Sleight A W. Science, 1997; 275: 61

[56] Ernst G, Broholm C, Kowach G R, Ramirez A P. Nature, 1998; 396: 147

[57] Perottoni C A, Da Jornada J. Science, 1998; 280: 886

[58] Sleight A. Nature, 2003; 425: 674

[59] Chen J, Xing X R, Sun C, Hu P G, Yu R B, Wang X W, Li L H. J Am Chem Soc, 2008; 130: 1144

[60] Takenaka K, Takagi H. Appl Phys Lett, 2009; 94: 131904

[61] Huang K, Han R Q. Solid State Physics. Beijing: Higher Education Press, 2004: 137

(黄昆, 韩汝琦. 固体物理学. 北京: 高等教育出版社, 2004: 137)

[62] Li J, Yokochi A, Amos T G, Sleight A W. Chem Mater, 2002; 14: 2602

[63] Tao J Z, Sleight A W. J Solid State Chem, 2003; 173: 442

[64] Cai F S. Master Dissertation. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2008

(蔡方硕.中科院理化技术研究所硕士论文, 北京, 2008)

[65] David W, Evans J, Sleight A W. Europhys Lett, 1999; 46: 661

[66] Sleight A W. Inorg Chem, 1998; 37: 2854

[67] Hao Y M, Zhao M, Zhou Y, Hu J F. Scr Mater, 2005; 53: 357

[68] Nakamura Y, Takenaka K, Kishimoto A, Takagi H. J Am Ceram Soc, 2009; 92: 2999

[69] Chen J C, Huang G C, Hu C, Weng J P. Scr Mater, 2003; 49: 261

[70] Huang R J, Wu Z X, Yang H H, Chen Z, Chu X X, Li L F. Cryogenics, 2010; 50: 750

[71] Huang R J, Wu Z X, Chu X X, Yang H H, Chen Z, Li L F. Solid State Sci, 2010; 12: 1977

[72] Takenaka K, Asano K, Misawa M, Takagi H. Appl Phys Lett, 2008; 92: 011927

[73] Huang R J, Xu W, Xu X D, Li L F, Pan X Q, Evans D. Mater Lett, 2008; 62: 2381

[74] Huang R J, Li L F, Cai F S, Xu X D, Qian L H. Appl Phys Lett, 2008; 93: 81902

[75] Takenaka K, Takagi H. Mater Trans, 2006; 47: 471

[76] Zhang C Y, Zhu J, Zhang M C. Acta Metall Sin, 2009; 45: 97

(张从阳, 朱洁, 张茂才. 金属学报, 2009; 45: 97)

[77] Sun Z H, Song X Y. Mater Lett, 2009; 63: 2059

[78] Song X Y, Sun Z H. China Pat, 200810115717.5, 2008

(宋晓艳, 孙中华. 中国专利, 200810115717.5, 2008)

[79] Song X Y, Zhang J X, Yue M, Li E D, Zeng H, Lu N D, Zhou M L, Zuo T Y. Adv Mater, 2006; 18: 1210

[80] Song X Y, Liu X M, Zhang J X. J Am Ceram Soc, 2006; 89: 494

[81] Song X Y, Zhang J X, Li E D, Lu N D, Yin F X. Nanotechnology, 2006; 17: 5584

[82] Song X Y, Sun Z H. China Pat, 200910082954.0, 2009

(宋晓艳, 孙中华. 中国专利, 200910082954.0, 2009)

[83] Sun Z H, Song X Y, Yin F X, Sun L X, Yuan X K, Liu X M. J Phys, 2009; 42D: 122004

[84] Sun Z H, Song X Y, Xu L L. Ceram Int, 2011; 37: 1693

[85] Song X Y, Liu G Q, He Y Z. Prog Nat Sci, 1998; 8: 92

[86] Song X Y, Liu G Q. J Mater Sci, 1999; 34: 2433

[87] Song X Y, Gao J P, Zhang J X. Acta Phys Sin, 2005; 54: 1313

(宋晓艳, 高金萍, 张久兴. 物理学报, 2005; 54: 1313)

[88] Gao J P, Song X Y, Zhang J X. J Mater Sci Technol, 2005; 21: 705

[89] Song X Y, Lu N D, Seyring M, Rettenmayr M. Appl Phys Lett, 2009; 94: 023102

[90] Sun Y, Wang C, Wen Y C, Chu L H, Pan H, Nie M. J Am Ceram Soc, 2010; 93: 2178

[91] Sun Y, Wang C, Wen Y C, Chu L H, Nie M, Liu F. J Am Ceram Soc, 2010; 93: 650

[92] Iikubo S, Kodama K, Takenaka K, Takagi H, Shamoto S. Phys Rev, 2008; 77B: 020409

[93] Takenaka K, Inagaki T, Takagi H. Appl Phys Lett, 2009; 95: 132508

[94] Fruchart D, Bertaut E F. J Phys Soc Jpn, 1978; 44: 781

[95] Tahara D, Motome Y, Masatoshi I. J Phys Soc Jpn, 2007; 76: 13708

[96] Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Phys Rev Lett, 2008; 101: 205901

[97] Matsuno J, Takenaka K, Takagi H, Matsumura D, Nishihata Y, Mizuki J. Appl Phys Lett, 2009; 94: 181904

[98] Kodama K, Iikubo S, Takenaka K, Takigawa M, Takagi H, Shamoto S. Phys Rev, 2010; 81B: 224419

[99] Kittel C. Phys Rev, 1960; 120: 335

[100] Sun Y, Wang C, Wen Y C. Mater Sci Forum, 2007; 561– 565: 557

[101] Song X Y, Sun Z H, Huang Q Z, Rettenmayr M, Liu X M, Seyring M, Li G N, Rao G H, Yin F X. Adv Mater, 2011; 23: 4690
[1] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[2] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[3] 邢奇凤; 邢献然; 杜凌; 于然波; 陈骏; 邓金侠; 罗君 . 水热法合成负热膨胀材料ZrW2O8[J]. 金属学报, 2005, 41(6): 669-672 .