Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 844-848    
  论文 本期目录 | 过刊浏览 |
纳米晶Ni疲劳行为的实验研究
谢季佳; 洪友士
(中国科学院力学研究所非线性力学国家重点实验室; 北京 100190)
EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL
XIE Jijia; HONG Youshi
State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
引用本文:

谢季佳 洪友士. 纳米晶Ni疲劳行为的实验研究[J]. 金属学报, 2009, 45(7): 844-848.
. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL[J]. Acta Metall Sin, 2009, 45(7): 844-848.

全文: PDF(921 KB)  
摘要: 

系统研究了纳米晶Ni与粗晶Ni的疲劳行为. 通过疲劳实验获得了这2种材料的疲劳应力--寿命曲线, 并采用AFM对纳米晶Ni样品表面进行观察以研究其裂纹萌生的微观机制, 利用纳米压痕仪对疲劳实验前后样品的力学性能和显微组织变化进行了研究. 结果表明, 纳米晶Ni具有比粗晶Ni更高的疲劳极限. AFM观察表明,纳米晶疲劳后样品表面出现平均尺寸为73 nm的胞状起伏, 疲劳后样品的晶粒尺寸未发生明显改变. 压痕硬度结果表明, 疲劳过程材料的力学性能也未发生明显变化.

关键词 纳米晶Ni疲劳裂纹起源纳米硬度原子力显微镜    
Abstract

Electrodeposited nanocrystalline (nc) metal is often used as a model material in nc material investigation. But electrodeposition typically yields only thin foils that are at most several hundred micrometers in thickness, this arouses experimental difficulties in fatigue testing. There are several investigations on fatigue of electrodeposited nc metals. However, for the lack of direct experimental evidence, the mechanism of fatigue crack nucleation for nc materials is still not clear. In addition to fatigue properties, the microstructure stability is another key point for the practice of bulk nc materials. Some research papers indicated that the grains of nc metal would grow up under quasi--static loading, but no any investigation give out results under cyclic loading. In this paper, fatigue of electrodeposited nc Ni was experimentally investigated. Fatigue testing was carried out to obtain the S--N curves. For the reason that surface is the most important site for fatigue crack initiation, atomic force microscopy (AFM) was used to scan the sample surface before and after fatigue testing, which provides a direct observation on fatigue crack nucleation mechanism. For investigation on the stability of microstructure, the AFM was also used to measure the grain size of samples after fatigue loading, and nanoindenter was used to investigate the change of mechanical properties of samples after fatigue testing. The S--N curves indicate that nanocryatalline samples have a higher fatigue limit than coarse grain ones. The AFM images indicate that cell pellet morphology with the average size of 73 nm appeared on sample surface after high cycle fatigue testing and the grain size is the same as those before the fatigue testing. From the results of nanoindentation, the mechanical properties including hardness, strain rate sensitivity and elastic modules of samples also keep no obvious change after fatigue loading. Based on these results, the fatigue crack nucleation mechanism of electrodeposited nc Ni was discussed.

Key wordsnanocrystalline Ni    fatigue crack initiation    nanoindentation    AFM
收稿日期: 2008-11-24     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金项目10772178和10721202以及非线性力学国家重点实验室青年基金资助

作者简介: 谢季佳, 男, 1973年生, 助理研究员, 博士

[1] Kumar K S, van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[2] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[3] Suresh S. Fatigue of Materials. New York: Cambridge University Press, 1991: 41
[4] Yagi N, Rikukawa A, Mizubayashi H, Tanimoto H. Mater Sci Eng, 2006; A442: 323
[5] Chinh N Q, Szommer P, Horita Z, Langdon T G. Adv Mater, 2006; 18: 34
[6] Wang N, Wang Z R, Aust K T, Erb U. Mater Sci Eng, 1997; A237: 150
[7] Yin W M, Whang S H, Mirshams R, Xiao C H. Mater Sci Eng, 2001; A301: 18
[8] Yin W M, Whang S H. Scr Mater, 2001; 44: 569
[9] Yin W M, Whang S H, Mirshams R A. Acta Mater, 2005; 53: 383
[10] Hanlon T, Kwon Y N, Suresh S. Scr Mater, 2003; 49: 675
[11] Hanlon T, Tabachnikova E D, Suresh S. Int J Fatigue, 2005; 27: 1147
[12] Moser B, Hanlon T, Kumar K S, Suresh S. Scr Mater, 2006; 54: 1151
[13] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2004; 85: 5197
[14] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[15] Liao X Z, Kilmametov A R, Valiev R Z, Gao H, Li X, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 021909
[16] Yang B, Vehoff H, Hohenvarter A, Hafok M, Pippan R. Scr Mater, 2008; 58: 790
[17] Brandstetter S, Zhang K, Escuadro A, Weertman J R, van Swygenhoven H. Scr Mater, 2008; 58: 61
[18] Haslam A J, Moldovan D, Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2003; 51: 2097
[19] Schiφtz J. Mater Sci Eng, 2004; A375–377: 975
[20] Witney B, Sanders P G, Weertman J R. Scr Metall Mater, 1995; 33: 2025
[21] Xie J, Wu X, Hong Y. Adv Mater Res, 2008; 33–37: 925
[22] Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P. Acta Mater, 2003; 51: 387
[23] Hasnaoui A, van Svygenhoven H, Derlet P M. Science, 2003; 300: 1550
[24] Raj R, Ashby M F. Metall Trans, 1971; 2: 1113

[1] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[2] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[3] 时婧 裴志亮 宫骏 孙超 MUDERS C M 姜辛. Si含量对电弧离子镀Ti-Al-Si-N薄膜组织结构和力学性能的影响[J]. 金属学报, 2012, 48(11): 1349-1356.
[4] 李付绍 安茂忠 刘光洲 段东霞. 硫酸盐还原菌对18--8不锈钢点蚀行为的影响[J]. 金属学报, 2009, 45(5): 536-540.
[5] 吴开明; 张莉芹; 贺信莱; 尚成嘉; 杨善武; 王学敏 . 低碳微合金钢中针状铁素体的微观力学性能及其组织稳定性[J]. 金属学报, 2006, 42(1): 19-22 .
[6] 华文深; 吴杏芳; 陆华; 沈电洪 . TiCx/Ni3Al复合材料相界面显微结构及界面纳米硬度与弹性模量分布[J]. 金属学报, 2002, 38(10): 1109-1114 .
[7] 方鸿生;杨志刚;王家军;郑燕康. 贝氏体和马氏体相变及应用的研究[J]. 金属学报, 1996, 32(4): 337-350.