Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 428-433    
  论文 本期目录 | 过刊浏览 |
不同循环载荷下54SiCr6钢的疲劳强度
陈树铭;李永德;柳洋波;杨振国;李守新;张哲峰
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
FATIGUE STRENGTHS OF THE 54SiCr6 STEEL UNDER DIFFERENT CYCLIC LOADING CONDITIONS
CHEN Shuming; LI Yongde; LIU Yangbo; YANG Zhenguo; LI Shouxin; ZHANG Zhefeng
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

陈树铭 李永德 柳洋波 杨振国 李守新 张哲峰. 不同循环载荷下54SiCr6钢的疲劳强度[J]. 金属学报, 2009, 45(4): 428-433.
, , , , , . FATIGUE STRENGTHS OF THE 54SiCr6 STEEL UNDER DIFFERENT CYCLIC LOADING CONDITIONS[J]. Acta Metall Sin, 2009, 45(4): 428-433.

全文: PDF(2092 KB)  
摘要: 

对高强弹簧钢54SiCr6在3种循环加载条件下(旋转弯曲, 超声和拉压)的疲劳性能进行了测试和比较. 由于疲劳试样存在应力梯度和尺寸差异, 3种循环载荷下对应的疲劳强度有较大差别. 断口分析表明, 3种疲劳样品也具有不同的断口形貌. 通过计算高应力截面积, 可以得到不同载荷下疲劳强度之间的定量关系, 从而为评估不同载荷下的不同试样的高强钢疲劳强度提供依据.

关键词 高强弹簧钢 循环加载 疲劳强度 高应力截面积    
Abstract

Since ultrasonic fatigue test has been used to study the very high cycle fatigue (107—109 cyc), the difference between ultrasonic and conventional fatigue test methods should be evaluated in order to ensure the validity of ultrasonic fatigue result. By comparing some results of other researchers, it is found that the frequency effect is negligible, and the loading condition is the main reason for the difference. A comparison of the fatigue strengths of the 54SiCr6 high strength spring steel under three kinds of cyclic loading conditions, rotating bending (RB), tension compression (TC) and ultrasonic (UL), was reported. The results reveal that the three kinds of fatigue specimens display different fracture features, and the fatigue strength of RB is the highest, TC is the lowest, and UL is somewhere in between. The difference in the fatigue strengths is mainly attributed to the distinctions of stress gradient and the size of specimens. By taking highly stressed cross–section area (HSCA) into consideration, a relationship of the fatigue strength and loading condition was proposed, and the two constants σlim,0 and σΞA in the equation of HSCA are mainly dependent on material strength and inclusion size, respectively. A relationship of fatigue strengths between RB and TC is also discussed specifically.

Key wordshigh strength spring steel    cyclic loading    fatigue strength    highly stressed cross--section area (HSCA)
收稿日期: 2008-09-22     
ZTFLH: 

TG 142

 
基金资助:

国家重点基础研究发展计划资助项目 G2004CB619100

作者简介: 陈树铭, 男, 1983年生, 硕士生

[1] Ebara R. Int J Fatigue, 2006; 28: 1465
[2] Yang Z G, Li S X, Zhang J M, Li G Y, Li Z B, Hui W J, eng Y Q. Acta Mater, 2004; 52: 5235
[3] Liu Y B, Yang Z G, Li Y D, Chen S M, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2008; A497: 408
[4] Lu L T, Zhang W H. J Mech Strength, 2005; 27: 388
(鲁连涛, 张卫华. 机械强度, 2005; 27: 388)
[5] Lu L T, Shiozawa K, Morii Y, Nishino S. Acta Metall Sin, 2005; 41: 1066
(鲁连涛, 盐泽和章, 森井佑一, 西野精一. 金属学报, 2005; 41: 1066)
[6] Wang Q Y, Bathias C, Kawagoishi N, Chen Q. Int J Fatigue, 2002; 24: 1269
[7] Wang Q Y. J Mater Sci, 2004; 39: 365
[8] Furuya Y, Matsuoka S, Abe T, Yamaguchi K. Scr Mater, 2002; 46: 157
[9] Marines I, Dominguez G, Baudry G, Vittori J F, Rathery S, Doucet J P, Bathias C. Int J Fatigue, 2003; 25: 1037
[10] Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 667
[11] Gaenser H P. Comput Mater Sci. 2008; 44: 230
[12] Shiozawa K, Morii Y, Nishino S, Lu L. Int J Fatigue, 2006; 28: 1521
[13] Murakami Y, Matsunaga H. Int J Fatigue, 2006; 28: 1509
[14] Lin J Z, Liu S H, Song Z L, Guo L Y, Zou D Q. Metal Defects, Loading and Fatigue. Beijing: China Railway Press, 1993: 69
(林吉忠, 刘淑华, 宋子濂, 郭灵彦, 邹定强. 金属的缺陷、载荷与疲劳. 北京: 中国铁道出版社, 1993: 69)
[15] Bazant Z P. J Eng Mech ASCE, 1984; 110: 518
[16] Carpinteri A. Int J Solids Struct, 1989; 25: 407
[17] Findley W. J Mech Eng Sci, 1972; 14: 424
[18] Frost N, Marsh K, Pook L. Metal Fatigue. Oxford–New York: Dover Pubblications, 1999: 2
[19] Carpinteri A, Spagnoli A, Vantadori S. Fatigue Fract Eng Mater Struct, 2002; 25: 619
[20] Kuguel R. Proc ASTM, 1961; 61: 732
[21] Sonsino C. Konstruktion, 1993; 45: 25
[22] Sonsino C, Fischer G. Materialwissenschaft und Werkstofftechnik, 2005; 36: 632
[23] Zhao H M, Hui W J, Nie Y H, Dong H, Weng Y Q. Iron, 2008; 43(5): 66
(赵海民, 惠卫军, 聂义宏, 董 瀚, 翁宇庆. 钢铁, 2008; 43(5): 66)
[24] Hui W J, Zhao H M, Nie Y H, Weng Y Q, Dong H. In: Hong J B ed. Proceedings of CSM2007 Annual Meeting, Beijing: The Chinese Society for Metals. 2007: 4
(惠卫军, 赵海民, 聂义宏, 翁宇庆, 董瀚. 洪及鄙主编. 2007中国钢铁年会论文集, 北京: 中国金属学会. 2007: 4)
[25] Ochi Y, Matsumura T, Masaki K, Yoshida S. Fatigue Fract Eng Mater, 2002; 25: 823

[1] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[2] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[3] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[4] 左景辉; 王中光; 韩恩厚 . Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709 .
[5] 张继明; 杨振国; 张建锋; 李广义; 李守新; 惠卫军; 翁宇庆 . 零夹杂42CrMo高强钢的超长寿命疲劳性能[J]. 金属学报, 2005, 41(2): 145-149 .
[6] 崔玉友; 项宏福; 贾清; 杨锐 . 热暴露对铸造Ti-47Al-2Cr-2Nb-0.15B合金的拉伸和疲劳性能的影响[J]. 金属学报, 2005, 41(1): 108-.
[7] 杨振国; 张继明; 李守新 . 42CrMoVNb细晶高强钢的疲劳行为[J]. 金属学报, 2004, 40(4): 367-372 .
[8] 何国求; 陈成澎 . 基于微结构分析定义应变路径非比例度[J]. 金属学报, 2003, 39(7): 715-720 .
[9] 冯忠信;张建中;陈新增. ZMl Mg合金的表面滚压强化[J]. 金属学报, 1994, 30(9): 422-426.
[10] 王德尊;刘钧;于维成;王中光;姚忠凯. 挤压SiC_w/LD2复合材料的疲劳强度及其影响因素[J]. 金属学报, 1994, 30(4): 176-180.
[11] 谈育煦;任立平;李刚. 表面层亚结构和残余应力对不锈钢和低碳钢疲劳强度的影响[J]. 金属学报, 1989, 25(5): 59-64.
[12] 陈文哲;钱匡武. 动态应变时效对奥氏体不锈钢纯弯疲劳强度的影响[J]. 金属学报, 1989, 25(2): 56-60.