Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 405-409    
  论文 本期目录 | 过刊浏览 |
Mo粉表面化学镀Cu及其反应机理
王光君; 王德志; 周杰;  吴壮志; 徐兵
1. 中南大学有色金属材料科学与工程教育部重点实验室; 长沙 410083
2. 中南大学 材料科学与工程学院; 长沙 410083
ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM
WANG Guangjun; WANG Dezhi; ZHOU Jie; WU Zhuangzhi; XU Bing
1. Key Laboratory of Nonferrous Metal Materials Science and Engineering; Ministry of Education; Central South University; Changsha 410083
2. School of Materials Science and Engineering; Central South University; Changsha 410083
引用本文:

王光君 王德志 周 杰 吴壮志 徐兵. Mo粉表面化学镀Cu及其反应机理[J]. 金属学报, 2009, 45(4): 405-409.
, . ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM[J]. Acta Metall Sin, 2009, 45(4): 405-409.

全文: PDF(1149 KB)  
摘要: 

利用Sn--Pd催化体系在Mo粉表面化学镀Cu制备了Cu/Mo复合粉体, 利用XRD, SEM, EDS和XPS对复合粉体的成分及形貌进行了分析.  利用XPS分析了Mo粉表面化学镀Cu过程中不同阶段元素价态的变化. 解释了化学镀Cu过程中纳米Pd粒子的形成及其对Cu沉积的催化作用.

关键词 化学镀Cu Mo粉 Cu/Mo复合粉体 反应机理    
Abstract

By using Sn–Pd catalyst system, the electroless plating Cu on the surface of Mo powder was performed to fabricate Cu/Mo composite powder. Composition, morphology and formation process of Cu/Mo particles were analyzed by XRD, SEM/EDS and XPS. The formation mechanism of Cu/Mo particles can be described as follows: the PdCl2 (activator) deposited on the surface of Mo particles firstly and then was reduced by SnCl2 (sensitizer) to nano Pd particles, which are the nucleation sites for Cu depositionfinally Cu coating formed.

Key wordselectroless plating Cu    Mo powder    Cu/Mo coposite powder    reaction mechanism
收稿日期: 2008-04-17     
ZTFLH: 

TQ153.1

 
作者简介: 王光君, 男, 1982年生, 硕士生

[1] Lu D M. Powder Metall Ind, 2002; 10(6): 30
(吕大铭. 粉末冶金工业, 2002; 10(6): 30)
[2] Maneshian M H, Simchi A, Razavi H Z. Mater Sci Eng, 2007; A445–446: 86
[3] Hwang K S, Huang H S. Mater Chem Phys, 2001; 67: 92
[4] Gusmano G, Bianco A, Polini R, Magistris P, Marcheselli G. J Mater Sci, 2001; 30: 901
[5] Raghu T, Sundaresan R, Ramakrishnan P, Ramamohan T R. Mater Sci Eng, 2001; A304–36: 438
[6] Peng X L. Mater Sci Eng, 1999; A262: 1
[7] Wang H Q, Li X H, Guo H J, Zhang B, Guo Y X. J Cent South Univ(Sci Technol), 2003; 34: 615
(王红强, 李新海, 郭华军, 张宝, 郭永兴. 中南大学学报(自然科学版), 2003; 34: 615)
[8] Sharma R, Agarwala R C, Agarwala V. Appl Surf Sci, 2006; 252: 8487
[9] Lee W, Yang H J, Reucroft P J, Soh H S, Kim J H, Woo S L, Lee J. Thin Solid Films, 2001; 392: 122
[10] Shukla S, Seal S, Akesson J, Oder R, Carter R, Rahman Z. Appl Surf Sci, 2001; 181: 35
[11] Meenan B J, Brown N M D, Wilson J W. Appl Surf Sci, 1994; 74: 221
[12] Huang H Z. The Surface Chemical Analysis. Shanghai: East China University of Science and Technology Press, 2001: 21
(黄惠忠. 表面化学分析. 上海: 华东理工大学出版社, 2001: 21)

[1] 丁文, 王小京, 刘宁, 秦亮. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究[J]. 金属学报, 2020, 56(8): 1084-1090.
[2] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[3] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[4] 王武孝; 袁森; 夏明许; 马红萍 . Cu2O-Al体系的化学反应机理[J]. 金属学报, 2002, 38(4): 403-406 .
[5] 张柏清; 李建国; 马洪涛; 方鸿生 . Al-Ti系中间合金的铝热反应[J]. 金属学报, 1999, 35(5): 473-476 .