Please wait a minute...
金属学报  2008, Vol. 44 Issue (2): 145-149     
  论文 本期目录 | 过刊浏览 |
固体透氧膜法与熔盐电解法制备金属铬的对比
陈朝轶 鲁雄刚
上海大学材料学院
Contrastive Studies on Chromium Metal Preparation Using FFC and SOM Process
陈朝轶 CHEN Chao-yi
上海大学材料学院
引用本文:

陈朝轶; 鲁雄刚 . 固体透氧膜法与熔盐电解法制备金属铬的对比[J]. 金属学报, 2008, 44(2): 145-149 .
, . Contrastive Studies on Chromium Metal Preparation Using FFC and SOM Process[J]. Acta Metall Sin, 2008, 44(2): 145-149 .

全文: PDF(543 KB)  
摘要: 本文利用固体透氧膜(SOM) 新方法,直接电解还原Cr2O3制取金属铬并与FFC法进行了对比。SEM、EDX和XRD分析表明:SOM法电解2小时,Cr2O3阴极片完全被还原成金属Cr,电流效率达到83%,电流密度为0.72A/cm2;FFC法电解6小时,Cr2O3阴极片只有外层被还原成金属Cr,内层为未被还原物相,电流效率为22%,电流密度为0.31A/cm2;分析两种方法的电流随时间变化的规律表明,SOM法电解速度快、电流效率高、电流密度大、无副反应发生,具有更好的应用前景。
Abstract:A new process of the Solid Oxygen-ion Membrane(SOM) to produce Chromium directly from Cr2O3 has been proposed in this paper. Which was contrasted with the FFC process. Through SEM, EDX and XRD analysis the result showed that, when electrolyzed for a period 2 hours using SOM process, the Cr2O3 pellets were full reduced to Cr metal, oxygen content was not found in the Cr particles, with the current efficiency and current density being 83 pct and 0.72A/cm2, respectively. But using FFC process to electrolyze for 6 hours, only outside of the Cr2O3 pellets were reduced to Cr metal, the inside without reduction, with the current efficiency and current density being 22 pct and 0.31A/cm2, respectively. The changing law of current with time showed that the SOM process have many merits such as the faster electrolysis speed, higher current efficiency and current density, the aside reactions were not happened. So it has a promising future.
Key words
收稿日期: 2007-05-17     
[1]Zhou J H.Producing Technology for Ferroalloy.Beijing: Science Press,1991:136 (周进华.铁合金生产技术.北京:科学出版社,1991:136)
[2]Lyakishev N P,Gasik M I.Metallurgy of Chromium,New York,NY:Allerton Press,1998
[3]Cotarta A,Bouteillon J,Poignet J C.J Appl Electrochem, 1997;27:651
[4]Bonciocat N,Cotarta A,Bouteillon J,Poignet J C.High Temp Mater Proc,2002;6:283
[5]Cotarta A,Bouteillon J,Poignet J C,Vasiliu F,Cotarta V.J Appl Electrochem,2001;31:987
[6]Chen G Z,Gordo E,Fray D J.Metall Mater Trans,2004; 35B:223
[7]Gordo E,Chen G Z,Fray D J.Electrochim Acta,2004; 49:2195
[8]Cheng H W,Lu X G,Li Q,Liu J M,Ding W Z,Zhou G Z.Acta Metall Sin,2006;42:500 (程红伟,鲁雄刚,李谦,刘建民,丁伟中,周国治.金属学报,2006;42:500)
[9]Krishnan A,Lu X G,Pal U.Metall Mater Trans,2005; 36B:463
[10]Fray D J,Farthing T W,Chen G Z.U K.International Patent PCT/GB99/01781,1998-06-05
[11]Chen G Z,Fray D J,Farthing T W.Nature,2000;407: 361
[12]Liu M F,Guo Z C,Lu W C.Chin J Nonferrous Met, 2004;14:1752 (刘美凤,郭占成,卢维昌.中国有色金属学报,2004;14:1752)
[13]Chen G Z,Fray D J,Farthing T W.Metall Mater Trans, 2001;32B:1041
[14]Chen G Z,Fray D J.J Electrochem Soc,2002;149:455
[15]Schwandt C,Fray D J.Electrochim Acta,2005;51:66
No related articles found!