Please wait a minute...
金属学报  2008, Vol. 44 Issue (11): 1332-1334     
  论文 本期目录 | 过刊浏览 |
凸形多面体个体晶粒的三维von Neumann准确方程
王浩;刘国权
北京科技大学材料科学与工程学院
AN EXACT THREE-DIMENSIONAL VON NEUMANN RELATION FOR INDIVIDUAL CONVEX POLYHEDRON GRAINS
;
北京科技大学
引用本文:

王浩; 刘国权 . 凸形多面体个体晶粒的三维von Neumann准确方程[J]. 金属学报, 2008, 44(11): 1332-1334 .
, . AN EXACT THREE-DIMENSIONAL VON NEUMANN RELATION FOR INDIVIDUAL CONVEX POLYHEDRON GRAINS[J]. Acta Metall Sin, 2008, 44(11): 1332-1334 .

全文: PDF(315 KB)  
摘要: 

由晶粒长大过程的曲率驱动本质出发, 以不同于MacPherson和Srolovitz的方法, 推导出凸型多面体晶粒的三维von Neumann关系式, 无任何其他形状假设及晶粒尺寸分布或拓扑分布要求. 在应用于凸型多面体晶粒时, 本文结果与MacPherson和Srolovitz给出的结果完全一致. 对于凸型多面体晶粒, 三维个体晶粒长大速率是晶粒平均切直径和晶粒棱总长度的函数, 符合Kinderlehrer指出的$n$维体积的变化速率仅与胞的(n-2)维特征量有关的规律.

关键词 三维晶粒长大vonNeumann方程曲率    
Abstract

Since J.von Neumann derived an exact formula for the growth rate of a cell in a two-dimensional cellular structures in 1952, people has attempted to find an exact extension of this result into three dimensions for a half century. In 2007, an exact three-dimensional von Neumann relation was reported in Nature (Nature, 2007, 446: 1053) by MacPherson and Srolovitz, which was regarded as a great progress of the long-time intense effort. However, the derivation of the exact three-dimensional von Neumann relation was complex and the quantity of “the mean width” of a real grain was difficult to measure. In this paper, based on the capillarity-driven nature of the grain growth, we derived the exact three-dimensional von Neumann-Mullins relation for a convex polyhedron grain in a simple method, which is independent of any additional assumptions concerning any grain size distribution, topology distribution or grain shape. It is shown in this paper that the three-dimensional growth rate of a convex polyhedron grain is related to two one-dimensional quantities: the grain’s mean caliper diameter and the sum of the length of its edges, which agrees with the property pointed by D. Kinderlehrer (Nature, 2007, 446: 995): the rate of change of n-dimensional volume is related to (n-2)-dimensional features of the cell and no others.

Key words3D grain growth    von Neumann relation    curvature    mean caliper diameter
收稿日期: 2008-03-24     
ZTFLH: 

TG111

 
[1]von Neumann J.In:Herring C,ed.,Metal Interfaces, Cleveland:American Society for Metals,1952:108
[2]Mullins W W.J Appl Phys,1956;27:900
[3]Rhines F N,Craig K R.Metall Trans,1974;5:413
[4]Rivier N.Philos Mag,1983;47B:L45
[5]Hillert M.Acta Metall,1965;13:227
[6]Glazier J A.Phys Rev Lett,1993;70:2170
[7]Yu H B,Liu G Q.China Sci Bull,1996;41:2000 (于海波,刘国权.科学通报,1996;41:2000)
[8]Liu G Q,Yu H B,Song X Y,Qin X G.Mater Design, 2001;22:33
[9]Liu G Q,Song X Y,Yu H B,Gu N J.Acta Metall Sin, 1999;35:245 (刘国权,宋晓艳,于海波,谷南驹.金属学报,1999;35:245)
[10]Hilgenfeldt S,Kraynik A M,Koehler S A,Stone H A.Phys Rev Lett,2001;86:2685
[11]Hilgenfeldt S,Kraynik A M,Reinelt D A,Sulliwan J M. Europhys Lett,2004;67:484
[12]Liu G Q,Yu H B,Song X Y,Qin X G,Wang C.J Univ Sci Technol Beijing,2004;11:212
[13]Glicksman M E.Mater Sci Forum,2004;467-470:1025
[14]Glicksman M E.Philos Mag,2005;85:3
[15]Wang H,Liu G Q.Acta Metall Sin,2008;44:13 (王浩,刘国权.金属学报,2008;44:13)
[16]MacPherson R D,Srolovitz D J.Nature,2007;446:1053
[17]Kinderlehrer D.Nature,2007;446:995
[18]DeHoff R T.In:Braun J D,Arrowsmith H W,McCall J L,eds.,Microstructural Science,New York:Elsevier North-Holland,1977;5:331
[19]DeHoff R T,Liu G Q.Metall Trans,1985;16A:2007
[20]Hilliard J E.In:Elias H,ed.,Stereology,New York: Springer-Verlag,1967:221
[21]DeHoff R T.Acta Metall Mater,1994;42:2633
[22]Minknowski H.Math Ann,1903;57:447
[23]Kendall M G,Moran P A P.Geometrical Probability.Lon- don:Charles Griffin,1963:81
[24]Struik D J.Lectures on Classical Differential Geometry, New York:Addison-Wesley,1950:25
[25]Taylor J E.Acta Metall Mater,1992;40:1475
[26]Rios P R,Fonseca G S,Lins J F C,Augusto F P M.Scr Mater,2007;57:727
[27]Liu G Q,Yu H B,Qin X G.Mater Sci Eng,2002;A326: 276
[1] 段萌萌 陈长乐. 超声振动对SCN-3%ETH模拟合金定向凝固的影响[J]. 金属学报, 2010, 46(7): 885-889.
[2] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
[3] 王浩; 刘国权; 秦湘阁 . 三维晶粒长大速率方程的大尺度Potts模型Monte Carlo仿真验证[J]. 金属学报, 2008, 44(1): 13-18 .
[4] 宋晓艳; 刘国权 . 第二相粒子含量对基体晶粒长大影响的计算机仿真研究[J]. 金属学报, 2000, 36(6): 592-596 .