Please wait a minute...
金属学报  2008, Vol. 44 Issue (11): 1316-1321     
  论文 本期目录 | 过刊浏览 |
多晶铝轧制变形的织构演变I. 实验研究
陈志永;才鸿年;常亚喆;张新明;刘楚明
中南大学材料科学与工程学院
TEXTURE EVOLUTION OF POLYCRYSTALLINE ALUMINUM DURING ROLLING DEFORMATION - I. Experimental Study
Zhiyong Chen;;;;
中南大学
引用本文:

陈志永; 才鸿年; 常亚喆; 张新明; 刘楚明 . 多晶铝轧制变形的织构演变I. 实验研究[J]. 金属学报, 2008, 44(11): 1316-1321 .
, , , , . TEXTURE EVOLUTION OF POLYCRYSTALLINE ALUMINUM DURING ROLLING DEFORMATION - I. Experimental Study[J]. Acta Metall Sin, 2008, 44(11): 1316-1321 .

全文: PDF(3119 KB)  
摘要: 

采用取向分布函数和取向线分析方法研究了初始自由分布和具有近似立方织构的多晶铝轧制织构的演变规律.结果表明: 随着轧制变形的进行, 对于初始自由分布的样品, 晶粒取向主要向α, β取向线附近聚集, 其形变织构主要由C, S及B织构组成, 且3种织构成分密度值相差不大; 对于初始具有近似立方织构的样品, 晶粒取向主要向β取向线上聚集, 其形变织构主要由C, S织构组成, B织构成分相对较弱. 2种情况下S织构成分体积分量均比C, B织构高.

关键词 多晶铝轧制变形初始织构自由分布    
Abstract

Experimental investigations on rolling texture evolution in plycrystalline aluminum with initial randomly distributed texture and nearly cube texture were carried out via orientation distribution functions and orientation line analysis in this paper. The results show that the rolling textures for the sample with initial randomly distributed texture mainly consists of S、C and B components during rolling deformation while the orientation density values for the three textures only have slight difference, most crystallites aggregate along the α and β orientations lines. The rolling texture for the sample with initial cube texture mainly consists of components C and S while the orientation density value for B component is much lower than those for C and S components, most crystallites accumulate along the β fiber. The volume fraction for S texture component is much higher than those for C and B textures under the two cases.

Key wordspolycrystalline aluminum    rolling deformation    initial texture    random distribution    texture evolution
收稿日期: 2008-02-28     
ZTFLH: 

TG146

 
[1]Sachs E.Z Vet Deut Ing,1928;72:734
[2]Taylor G I.J Inst Met,1938;62:307
[3]Honneff H,Mecking H.In:Gottstein G,L(?)cke K,eds., Proc 5th Int Conf on Textures of Materials,Aachen: Springer,1978:265
[4]van Houtte P.In:Nagashima S,ed.,Proc 6th Int Conf on Teztures of Materials,Tokyo:Iron and Steel Institute of Japan,1981:428
[5]Kocks U F,Chandra H.Acta Metall,1982;30:695
[6]Fortunier R,Driver J H.Acta Metall,1987;35:509
[7]Kocks U F.Metall Trans,1970;1:1121
[8]Hirsch J,L(?)cke K.Acta Metall,1988;36:2883
[9]Zhang X M,Li S Y.Bull Natl Nat Sci Found China,1995; 9(3):26 (张新明,李赛毅.中国科学基金,1995;9(3):26)
[10]Kalidindi S R,Bronkhorst C A,Anand L.J Mech Phys Solids,1992;40:537
[11]Engler O,Huh M Y,Tome C N.Metall Mater Trans,2000; 31A:2299
[12]Raabe D,Zhao Z,Mao W.Acta Mater,2002;50:4379
[13]Zhao Z,Kuchnicki S,Radovitzky R,Cuitino A.Acta Mater,2007;55:2361
[14]Cao P,Fan G,Lei L P,Zeng P.Acta Metall Sin,2007;43: 913 (曹鹏,方刚,雷丽萍,曾攀.金属学报,2007;43:913)
[15]Bishop J F W,Hill R.Philos Mag,1951;42:414
[16]Bishop J F W,Hill R.Philos Mag,1951;42:1298
[17]Bunge H J.Leffers T.Scr Metall,1971;5:143
[18]Mecking H.In:Nagashima S,ed.,Proc 6th Int Conf on Textures of Materials,Tokyo:Iron and Steel Institute of Japan,1981:53
[19]Canova G R,Kocks U F.In:Brakman C M,Jongenburger P,Mittemeijer E J,eds.,Proc 7th Int Conf on Textures of Materials.Noordwijkerhout:Netherlands Society of Ma- terials Science,1984:573
[20]Asaro R J,Needleman A.Acta Metall,1985;33:923
[21]Renouard M,Wintenberger M.C R Acad Sci,1976;283B: 237
[22]Busso Esteban P,Cailletaud G.Int J Plast,2005;21:2212
[23]Bunge H J.Texture Analysis in Materials Science Mathematical Methods.London:Butterworths.1982:47
[24]L(?)cke K,Pospiech J,Virnich K H,Jura J.Acta Metall, 1981;29:167
[25]Hirsch J,L(?)cke K,Hatherly M.Acta Metall,1988;36: 2905
[26]Chen Z Y,Cai H N,Chang Y Z,Zhang X M,Liu C M. Acta Metall Sin,2008;44:1322 (陈志水,才鸿年,常亚喆,张新明,刘楚明.金属学报,2008;44:1322)
[1] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[2] 陈志永; 才鸿年; 常亚喆; 张新明; 刘楚明 . 多晶铝轧制变形的织构演变II. 理论模拟[J]. 金属学报, 2008, 44(11): 1322-1331 .
[3] 张新明; 邓运来; 刘瑛; 唐建国; 周卓平 . 不同温度轧制多晶铝的微观组织与晶界分布[J]. 金属学报, 2005, 41(9): 947-952 .