Please wait a minute...
金属学报  2008, Vol. 44 Issue (10): 1253-1259     
  论文 本期目录 | 过刊浏览 |
电场活化烧结MoSi2-SiC复合材料的温度场有限元模拟
胡侨丹;罗蓬;李建国;严有为
上海交通大学 材料科学与工程学院
FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE
Qiaodan Hu;Peng Luo;;Jianguo Li
上海交通大学 材料科学与工程学院
引用本文:

胡侨丹; 罗蓬; 李建国; 严有为 . 电场活化烧结MoSi2-SiC复合材料的温度场有限元模拟[J]. 金属学报, 2008, 44(10): 1253-1259 .
, , , . FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE[J]. Acta Metall Sin, 2008, 44(10): 1253-1259 .

全文: PDF(2185 KB)  
摘要: 在建立电场活化烧结(field activated sintering, FAS)过程模型基础上, 对FAS工艺制备MoSi2-SiC复合材料的温度场进行了有限元模拟. 结果表明, 在FAS过程中, 模具-试样系统中的温度场特性是电场Joule热、体系化学反应热与模具传热效应的综合结果. 在烧结过程中, 由于Joule热与化学热的叠加作用, 试样中心温度最高, 并沿径向与轴向形成温度梯度, 从而在晶粒尺寸与致密化程度方面影响合成材料的组织均匀性. 此模拟结果为温度梯度的合理控 制提供了理论依据, 有助于获得组织均匀、晶粒细小且致密性高的复合材料.
关键词 电场活化烧结(FAS)MoSi2-SiC复合材料    
Abstract:Field Activated Sintering (FAS) modeling was made and finite element simulation was done by means of computer aided finite element method. The results show that FAS temperature field was determined by an interaction among Joule heating of electric field, heat released by chemical reaction, and heat transferring characteristics of die-specimen system. Due to overlap of heats by Joule effect and chemical reactions, the highest temperature was in the center of the sample and a radius temperature gradient was established. That significantly took effects to uniformity of microstructure and densification degree. Therefore, it is important to control temperature gradient within the sample of FAS to prepare dense and fine grained bulk materials.
Key wordsField Activated Sintering (FAS)    MoSi2-SiC composite    Temperature field    Finite element modeling
收稿日期: 2007-11-24     
ZTFLH:  TB383  
[1]Jin X H,Gao L,Gui L H,Guo J K.J Mater Res,2002; 17:1024
[2]Gao Y P.Novel Technology of Powder Metallurgy-Spark Sintering.Beijing:Metallurgical Industry Press,1992:1 (高一平.粉末冶金新技术——电火花烧结.北京:冶金工业出版社,1992:1)
[3]Xue H,Munir Z A.J Eur Ceram Soc,1997;17:1787
[4]Gedevanishvili S,Munir Z A.Mater Sci Eng,1998;A242: 1
[5]Orru R,Cao G,Munir Z A.Chem Eng Sci,1999;54:3349
[6]Heian E M,Feng A,Munir Z A.Acta Mater,2002;50: 3331
[7]Orru R,Cincotti A,Cao G,Munir Z A.Chem Eng Sci, 2001;56:683
[8]Feng A,Graeve O A,Munir Z A.Comput Mater Sci,1998; 12:137
[9]Wang Y C,Fu Z Y.Mater Sci Eng,2002;B90:34
[10]Zou Z G,Fu Z Y,Yuan R Z,Mai L Q.J Wuhan Univ Technol-Mater Sci Ed,2002;17(1):23
[11]Zou Z G.Self-Propagation High Temperature Synthesis of TiC/Fe Composite.Beijing:Metallurgical Industry Press, 2002:27 (邹正光.TiC/Fe复合材料的自蔓延高温合成工艺与应用.北京:冶金工业出版社,2002:27)
[12]Yang S M.Theory of Heat Transfer.Beijing:Higher Ed- ucation Press,1982:5 (杨世铭.传热学.北京:高等教育出版社,1982:5)
[13]Wang B X.Engineering Theory of Heat and Mass Trans- fer.Beijing:Science Press,1982:5 (王补宣.工程传热传质学.北京:科学出版社,1982:5)
[14]Huebner K H,Thornton E A(eds.),Wang Z Q(trans.). Finite Element Method.Beijing:World Publishing Com- pany,1993:80 (Huebner K H,Thornton E A著.王至勤译.有限元素法.北京:世界图书出版公司,1993:80)
[15]Kong X Q.Application of Finite Element Method in Heat Transfer.Beijing:Science Press,1998:1 (孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998:1)
[1] 孙祖庆; 张来启; 杨王; 王月; 傅晓伟 . 原位合成MOSi2-SiC复合材料的高温强化[J]. 金属学报, 2001, 37(4): 369-372 .
[2] 张来启; 孙祖庆; 张跃; 杨王玥; 陈光南 . 原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能[J]. 金属学报, 2001, 37(3): 325-331 .
[3] 孙祖庆; 张来启; 杨王玥; 傅晓伟; 朱静 . 原位合成MoSi2-SiC复合材料的室温增韧[J]. 金属学报, 2001, 37(1): 104-108 .