Please wait a minute...
金属学报  2008, Vol. 44 Issue (1): 119-124     
  论文 本期目录 | 过刊浏览 |
热浸铝钢等离子体电解氧化陶瓷层的微观力学特性
吴振强;夏原;李光;徐方涛;银光耀
中国科学院力学研究所
Micro-mechanical properties of ceramic coating fabricated by plasma electrolytic oxidation on steel substrate
Zhen-qiang Wu;Yuan xia;Guang Li;Fang-tao Xu;Guang-yao Yin
中国科学院力学研究所
引用本文:

吴振强; 夏原; 李光; 徐方涛; 银光耀 . 热浸铝钢等离子体电解氧化陶瓷层的微观力学特性[J]. 金属学报, 2008, 44(1): 119-124 .
, , , , . Micro-mechanical properties of ceramic coating fabricated by plasma electrolytic oxidation on steel substrate[J]. Acta Metall Sin, 2008, 44(1): 119-124 .

全文: PDF(358 KB)  
摘要: 采用纳米压入方法表征了热浸镀铝钢表面由Al2O3 层、 Al层和FeAl层组成的复合涂层的纳米硬度、弹性模量及断裂韧 性等微观力学性能,采用扫描电镜(SEM)观察了纳米压痕形貌,并 分析了孔洞对陶瓷层的纳米压入行为和压痕裂纹扩展的影响. 结果表明:等离子体电解氧化(PEO)陶瓷层中包含许多微米和 亚微米尺度的细小孔洞,陶瓷层弹性模量约为226.4 GPa,纳米 硬度约为19.6 GPa. 当纳米压入深度为250 nm时,所测得陶瓷层的 力学参数分散性较大. 与FeAl层比较, PEO陶瓷层具有较高的裂 纹扩展阻力. FeAl层纳米压痕顶端产生了沿直线扩展的 径向裂纹;而陶瓷层纳米压痕中除径向裂纹外 出现了侧边裂纹.
关键词 热浸铝钢陶瓷层纳米压入    
Abstract:Micro-mechanical properties such as nanohardness, elastic modulus, fracture toughness, etc. of composite coatings which consist of Al2O3 layer, Al layer and FeAl layer were evaluated by using nanoindentation method. The micrographs of nanoindentation were observed using a scanning electron microscopy (SEM). The effect of pores on Load-displacement response and crack propagation was investigated. The results show that there are some pores at micron scale or sub-micron scale within ceramic coatings. Elastic modulus and hardness of ceramic coating are about 226.4Gpa, 19.6Gpa, respectively. Mechanical properties of ceramic coatings are very discrete when the nanoindentatin depth is set as 250nm. The resistance of crack propagation of Al2O3 layer is large than that of FeAl layer. Radial crack emerges from the corner of residual impression of FeAl layer and propagates along straight line. Radial crack and lateral crack appear at nanoindentation of PEO coating and the cracks’ paths are deflected.
Key wordsceramic coating    nanoindentation    nanohardness    elastic modulus    cracks in impression
收稿日期: 2007-03-06     
ZTFLH:  TG174.45  
[1]Yerokhin A L,Nie X,Leyland A,Matthews A.Surf Coat Technol,1999;122:73
[2]Guan Y J,Xia Y.Trans Nonferrous Met Soc Chin,2006; 16:1097
[3]Xue W B,Deng Z W,Chen RY,Zhang T H.Thin Solid Films,2000;372:114
[4]Wu Z Q,Xia Y,Guan Y J.Trans Mater Heat Treat,2006; 27(2):103 (吴振强,夏原,关永军材料热处理学报,2006;27(2):103)
[5]Wu Z Q,Xia Y,Zhang C J,Li G.J Inorg Mater,2007; 22:534 (吴振强,夏原,张春杰,李光.无机材料学报,2007;22:534)
[6]Gu W C,Shen D J,Wang Y L,Chen G L,Feng W R, Zhang G L,Fan S H,Liu C Z,Yang S Z.Appl Surf Sci, 2006;252:2977
[7]Yu S X,Xia Y,Guan Y J.Trans Nonferrous Met Soc Chin,2004:14(Suppl.2):310
[8]Fischer-Cripps A C.Nanoindentation.New York: Spring-Verlag,2002:96
[9]Oliver W C,Pharr G M.J Mater Res,1992;7:1564
[10]Page T F,Oliver W C,McHargue C J.J Mater Res,1992; 7:450
[11]Zhai C S,Yang L,Wang J,ZhaoW B,Sun B D.J Inorg Mater,2005;20:1500 (翟长生,杨力,王俊,赵文明,孙宝德.无饥材料学报,2005;20:1500)
[12]Voevdin A A,Yerokhin A L,Lyubimov V V,Donley M S, Zabinski J S.Surf Coat Technol,1996;86-97:516
[13]Xue W B,Deng Z W,Chen R Y,Zhang T H.Acta Metall Sin,1999;35:638 (薛文斌,邓志喊,陈如意,张通和.金属学报,1999;35:638)
[14]Xin S G.Song L X,Zhao R G,Hu X F.Surf Coat Technol, 2005;199:184
[15]Curran J A,Clyne T W.Surf Coat Technol,2006;54: 1985
[16]Anstis G R,Chantikul P,Lawn B R,Marshall D B.J Am Ceram Soc,1981;64:533
[17]Zhang T H.J Exp Mech,2004;19:437 (张泰华.实验力学,2004;19:437)
[18]Palmqvist S.Jernkontorets Ann,1957;141:303
[19]Zhang S,Sun D,Fu Y Q,Du H J.Surf Coat Technol, 2005;198:74
[20]Xu Z H,Rowcliffe D.Surf Coat Technol,2002;161:44
[21]Luo H,Goberman D,Shaw L,Gell M.Mater Sci Eng, 2003;A346:237
[1] 张茹,沈汉杰,张雅琴,李栋梁,李彦嘉,雍兴跃. 不锈钢表层对空化与电化学腐蚀交互作用的纳米力学响应[J]. 金属学报, 2013, 49(5): 614-620.
[2] 郭振丹; 王秀芳; 杨晓萍; 蒋冬梅; 马学鸣; 宋洪伟 . 多晶Cu中Young's模量和硬度与晶体取向的关系[J]. 金属学报, 2008, 44(8): 901-904 .
[3] 王飞; 徐可为 . 加载速率对Al膜纳米压入蠕变性能的影响[J]. 金属学报, 2004, 40(11): 1138-1142 .
[4] 王飞; 徐可为 . 晶粒尺寸与保载载荷对Cu膜纳米压入蠕变性能的影响[J]. 金属学报, 2004, 40(10): 1032-1036 .
[5] 李美姮; 张重远; 孙晓峰; 胡望宇; 宫声凯 . 电子束物理气相沉积热障涂层的高温氧化行为[J]. 金属学报, 2002, 38(9): 989-993 .
[6] 唐武; 徐可为; 王平; 李弦 . Au/NiCr/Ta多层金属膜的表面粗糙度和纳米压入硬度的研究[J]. 金属学报, 2002, 38(5): 449-452 .
[7] 黄立业; 徐可为; 吕坚 . 类金刚石碳膜的纳米划擦行为及其加载-卸载效应[J]. 金属学报, 2001, 37(12): 1247-1250 .
[8] 马德军; Jian.L.U; 徐可为; 何家文 . 利用纳米压入加载曲线确定金属薄膜的屈服强度和硬化指数Ⅰ.数值和模拟[J]. 金属学报, 1999, 35(10): 1043-1048 .
[9] 马德军; Jian L.U; 徐可为; 何家文 . 利用纳米压入加载曲线确定金属薄膜的屈服强度和硬化指数Ⅱ.实验及验证[J]. 金属学报, 1999, 35(10): 1049-1052 .
[10] 马德军;徐可为;何家文. 测定金属薄膜屈服强度的纳米压入法研究[J]. 金属学报, 1998, 34(6): 661-666.
[11] 曾晓雁;吴新伟;陶曾毅;朱蓓蒂;崔崑. 激光熔覆Ni-WC金属陶瓷层的耐磨性分析[J]. 金属学报, 1997, 33(8): 885-890.
[12] 侯根良;刘军海;徐可为. 用连续压入法一次性测定材料表层微米深度内的硬度分布[J]. 金属学报, 1995, 31(5): 236-240.