Please wait a minute...
金属学报  2007, Vol. 43 Issue (9): 903-906     
  论文 本期目录 | 过刊浏览 |
磁控溅射Cu膜表面演化的多尺度行为
杨吉军;徐可为
西安交通大学材料科学与工程学院
MULTI-SCALE SURFACE EVOLUTION OF COPPER THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING
Jijun Yang;
西安交通大学材料科学与工程学院
引用本文:

杨吉军; 徐可为 . 磁控溅射Cu膜表面演化的多尺度行为[J]. 金属学报, 2007, 43(9): 903-906 .
, . MULTI-SCALE SURFACE EVOLUTION OF COPPER THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING[J]. Acta Metall Sin, 2007, 43(9): 903-906 .

全文: PDF(454 KB)  
摘要: 用原子力显微镜(AFM)观察磁控溅射Cu膜的表面形貌, 并基于功率谱密度(PSD)和粗糙度测量方法对薄膜进行了量化表征, 研究了薄膜表面演化的动力学标度行为.结果表明: 薄膜表面演化具有多尺度特征, 在全域和局域呈现两种不同的标度行为.全域的粗糙度指数αg≈0.83, 生长指数βg≈0.85; 而局域的粗糙度指数αl≈0.88, 生长指数βl≈0.26.这种差异揭示了薄膜生长机制的尺度依赖性. 薄膜全域表面演化为异常标度行为,这归因于体扩散导致了晶粒几何形态的急剧变化; 而局域表面演化呈现表面扩散控制的生长行为.
关键词 Cu膜表面演化动力学标度    
Abstract:The surface morphologies of Cu thin films deposited by magnetron sputtering were obtained by atomic force microscopy (AFM). From AFM images, power spectrum density (PSD) and roughness measurement methods were proposed to obtain dynamic scaling exponents of the film surface evolution. The results show that the film surface evolution has multi-scale characteristic. The global roughness exponent and growth exponent are 0.83 and 0.85, respectively, whereas the local roughness exponent and growth exponent are 0.88 and 0.26, respectively. The local dynamic surface evolution is consistent with that predicted by surface diffusion-dominated growth model. The global surface dynamic evolution exhibits anomalous scaling characteristic, which arises from bulk diffusion mechanism during the films grown at high temperature.
Key wordsCu film    surface evolution    dynamic scaling
收稿日期: 2006-12-08     
ZTFLH:  TB43,TB84  
[1]Meakin P.Fractal,Scaling and Growth Far From Equilib- rium.Cambridge:Cambridge University Press,1998
[2]Family F,Viscek T.J Phys,1985;18A:L75
[3]Barabasi A L,Stanley H E.Fractal Concepts in Surface Growth.Cambridge:Press Syndicate of the University of Cambridge,1995
[4]Srolovitz D J,Mazor A,Bukiet B G.J Vac Sci Technol, 1988;6A:2371
[5]Wollschl(?)ger J,Luo E Z,Henzler M.Phys Rev,1998;57B: 15541
[6]Huo S,Schwaxzacher W.Phys Rev Lett,2001;86:256
[7]Lita A E,Sanchez J E.Phys Rev,2000;61B:7692
[8]Auger M A,Vázques L,Cuerno R,Castro M,Jergel M, Sánchez O.Phys Rev,2006;73B:045436
[9]Murarka S P.Mat Sci Eng,1997;R19:87
[10]Palasantzas G,Zhao Y P,Wang G C,Lu T M,Barnas J, Hosson J T M.Phys Rev,2000;61B:11109
[11]Jeffries J H,Zuo J K,Craig M M.Phys Rev Lett,1996; 76:4931
[12]Dalakos G T,Plawsky J P,Persans P H.Phys Rev,2005; 72B:205305
[13]Flewitt A J,Robertson J,Milne W I.J Appl Phys,1999; 85:8032
[14]Hasan N M,Mallett J J,dos Santos S G,Pasa A A, Schwarzacher W.Phys Rev,2003;67B:081401
[15]Ojeda F,Cuerno R,Salvarezza R,Vázquez L.Phys Rev Lett,2000;84:3125
[16]Kant R.Phys Rev,1996;53E:5749
[17]Messier R,Yehoda J E.J Appl Phys,1985;58:3739
[18]Barna P B,Adamik M.Thin Solid Films,1998;317:27
[19]Chen D Q,Zheng Z Q,Liu Z Y,Li S C.Acta Metall Sin, 2003;39:1238 (陈大钦,郑子樵,刘祖耀,李世展.金属学报,2003;39:1238)
[20]Saitou M,Makabe A,Tomoyose T.Surf Sci,2000;459: L462
[21]Vázquez L,Salvarezza R C,Herrasti P,Ocón P,Vara J M,Arvia A J.Phys Rev,1995;52B:2032
[1] 黎业生 汪伟. 纳米压痕法测量Cu膜的硬度和弹性模量[J]. 金属学报, 2010, 46(9): 1098-1102.
[2] 杨吉军; 马飞; 徐可为 . 多晶柱状Cu膜的表面粗化与织构[J]. 金属学报, 2006, 42(12): 1233-1237 .
[3] 周耐根; 周浪; 宋固全; 宋照东 . 等轴应变作用下Cu, Al薄膜的取向择优生长[J]. 金属学报, 2005, 41(8): 809-813 .
[4] 覃; 明; 嵇宁; 李家宝; 马素媛; 陈昌荣; 宋忠孝; 何家文 . Cu附着膜的屈服强度与退火温度的关系[J]. 金属学报, 2004, 40(7): 716-720 .
[5] 张人佶;王望弟;何大韧. Cu/a—C:H双层膜的网络分形及Cu膜退炎缩聚[J]. 金属学报, 1990, 26(4): 139-143.