Please wait a minute...
金属学报  2006, Vol. 42 Issue (9): 1003-1008     
  论文 本期目录 | 过刊浏览 |
高应变速率下钨丝增强锆基块体非晶合金复合材料的变形行为
陈德民; 王刚; 孙剑飞; 沈军
装甲兵工程学院机械系
DEFORMATION BEHAVIOR OF TUNGSTEN WIRES ENHANCED Zr-BASED BULK METALLIC GLASS COMPOSITE AT HIGH STRAIN RATE
CHEN Demin;WANG Gang;SUN Jianfei; SHEN Jun
装甲兵工程学院机械系
引用本文:

陈德民; 王刚; 孙剑飞; 沈军 . 高应变速率下钨丝增强锆基块体非晶合金复合材料的变形行为[J]. 金属学报, 2006, 42(9): 1003-1008 .
, , , . DEFORMATION BEHAVIOR OF TUNGSTEN WIRES ENHANCED Zr-BASED BULK METALLIC GLASS COMPOSITE AT HIGH STRAIN RATE[J]. Acta Metall Sin, 2006, 42(9): 1003-1008 .

全文: PDF(328 KB)  
摘要: 利用压力浸渗制备出钨丝增强Zr41.25Ti13.75Ni10Cu12.5Be22.5块体非晶合金复合材料, 采用应变速率为1×10 -4 s-1的准静态压缩实验及应变速率为2×10 3 s-1的动态压缩实验的方法, 研究了在动载荷作用下该复合材料的力学性能. 结果表明: 准静态压缩时, 复合材料的强度约为1980 MPa, 与单一块体非晶合金相比并无显著提高, 而塑性提高约5倍, 达到11.5%; 动态压缩时,复合材料的最大抗压强度升至约2648 MPa, 塑性则在1.8%—7.5%之间, 复合材料的应变速率敏感指数为0.022. 在准静态压缩下, 复合材料的抗压强度受到残余热应力及钨丝失稳弯曲极限压应力的影响; 在动态压缩下, 除了热应力的影响外, 还受到钨丝剪切断裂以及复合材料正弦型弯曲行为的影响. 后两者使复合材料的抗压强度在动态加载条件下升高.
关键词 锆基块体非晶合金钨丝增强复合材料    
Abstract:A tungsten-wires strengthened Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass composite was fabricated by a melt infiltration cast process. Quasistatic (1×10 -4 s-1)and dynamic (2×10 3 s-1)compressive experiments are carried out for the composite and monolithic material. The results showed that the composite exhibits a compressive strength of 1980 MPa which is similar to that of the matrix, and a plastic strain of 11.5% which is 5 times of that of the matrix under quasistatic compressive deformation. Under dynamic compressive load, the compressive strength of the composite is promoted to 2648 MPa, the plastic strain is in a range from 1.8% to 7.5% and the strain rate sensitivity of the composite is 0.022. Under quasistatic condition, the compressive strength is influenced by residual thermal stress and the critical stress of the tungsten wires. Under dynamic compressive condition, besides the residual thermal stress, the main factors are the shear fracture of tungsten wires and the sinusoidal buckling of the composite.
Key wordsZr-based bulk metallic glass    W wire strengthened composite
收稿日期: 2005-12-15     
ZTFLH:  TG139.8  
[1]Inoue A,Shen B L,Koshiba H,Kato H,Yavari A R.Nature Mater,2003; 2:661
[2]Shen J,Chen Q J,Sun J F,Fan H B,Wang G.Appl Phys Lett,2005; 86:151907
[3]Stoica M,Eckert J,Roth S,Zhang Z F,Schultz L,Wang W H.Intermetallics,2005; 13:764
[4]Xi X K,Zhao D Q,Pan M X,Wang W H,Wu Y,Lewandowski J J.Phys Rev Lett,2005; 94:125510
[5]Bian Z,Kato H,Qin C L,Zhang W,Inoue A.Acta Mater,2005; 53:2037
[6]Pang S J,Zhang T,Asami K,Inoue A.Acta Mater,2002;50:469
[7]Sergueeva A V,Mara N A,Kuntz J D,Lavernia E J,Mukherjee A K.Philos Mag,2005; 85:2671
[8]Pan X F,Zhang H,Zhang Z F,Stoica M,He G,Eckert J.J Mater Res,2005; 20:2632.
[9]Conner R D,Dandliker R B,Scruggs V,Johnson W L.Int J Impact Eng,2000; 24:435
[10]Haein C-Y,Schroers J,Johnson W L.Appl Phys Lett,2002; 80:1906
[11]Clausen B,Lee S-Y,(?)st(?)ndag E,Aydiner C C,Conner R D,Bourke M A M.Scr Mater,2003; 49:123
[12]Dragoi D,(?)st(?)ndag E,Clausen B,Bourke M A M.Scr Mater,2001; 45:245
[13]Qiu K Q,Wang A M,Zhang H F,Ding B Z,Hu Z Q.Intermetalllics,2002; 10:1283
[14]Conner R D,Dandliker R B,Johnson W L.Acta Mater,1998; 40:6089
[15]Huang Y-L,Bracchi A,Niermann T,Seibt M,Daniiov D,Nestler B,Schneider S.Scr Mater,2005; 53:93
[16]L(?)ser W,Das J,G(?)th A,KlauβH-J,Mickel C,K(?)hn U,Eckert J,Roy S K,Schultz L.Intermetallics,2004; 12:1153
[17]Wang G,Shen J,Qin Q H,Sun J F,Stachurski Z H,Zhou B D.J Mater Sci,2005; 40:4561
[18]Peker A,Johnson W L.Appl Phys Lett,1993; 63:2342
[19]Haein C-Y,Conner R D,Szuecs F,Johnson W L.Scr Mater,2001; 45:1039
[20]Staehler J M,Predebon W W,Pletka B J,Lankford J.J Am Ceram Soc,1993; 76:536
[21]Guden M,Hall I W.Mater Sci Eng,1997; A232:1
[22]Oosterkamp L D,Ivankovic A,Venizelos G.Mater Sci Eng,2000; A278:225
[23]Ravichandran G,Subhash G.J Am Ceram Soc,1994; 77:
??263
[24]Bruck H A,Rosakis A J,Johnson W L.J Mater Res,1996;11:503
[25]Dandliker R B,Conner R D,Johnson W L.J Mater Res,1998; 13:2896
[26]Wang G,Shen J,Sun J F,Lu Z P,Stachurski Z H,Zhou B D.Mater Sci Eng,2005; A398:82
[27]Wei Q,Ramesh K T,Ma E,Kesckes L J,Dowding R J,Kazykhanov V U,Valley R Z.Appl Phys Lett,2005; 86:101907
[28]Love A E H.A Treatise on the Mathematical Theory of Elasticity.New York:Dover Publications,1944
[29]Clyne T W,Withers P J.An Introduction to Metal Matrix Composites.Cambridge:Cambridge University Press,1993
[30]Gladden J R,Handzy N Z,Belmonte A,Villermaux E.Phys Rev Lett,2005; 94:035503
[31]Lindberg H E,Alexander L F.Dynamic Pulse Buckling:Theory and Experiment.Dordrecht:Martinus Nijhoff Publisher,1987
[1] 黄彩云 谌祺 柳林. 无Ni型锆基块体非晶合金在生物模拟体液中的摩擦磨损性能[J]. 金属学报, 2010, 46(6): 681-686.
[2] 孙亚娟 魏先顺 黄永江 沈 军. 稀土Gd掺杂对锆基块体非晶合金玻璃形成能力及力学性能的影响[J]. 金属学报, 2009, 45(2): 243-248.
[3] 贺林; 孙军 . 氧对Zr-Cu-Ni-Al-Ti块体非晶合金热稳定性的影响[J]. 金属学报, 2006, 42(2): 134-138 .
[4] 王刚; 沈军; 孙剑飞; Z.H.Stachurski; 周彼德 . Zr41.25Ti13.75Ni10Cu12.5Be22.5块体非晶合金的拉伸断裂行为[J]. 金属学报, 2005, 41(3): 291-296 .
[5] 沈军; 王刚; 孙剑飞; 陈德民; 邢大伟; 周彼德 . Zr基块体非晶合金在过冷液相区的超塑性流变行为[J]. 金属学报, 2004, 40(5): 518-522 .
[6] 邢大伟; 沈军; 孙剑飞; 王刚 . 高过冷度Zr-Cu-Ni-Al-Hf-Ti块体非晶合金[J]. 金属学报, 2003, 39(4): 355-358 .