Please wait a minute...
金属学报  2006, Vol. 42 Issue (8): 865-869     
  论文 本期目录 | 过刊浏览 |
熔透熔池表面下塌变形的动态演变过程分析
武传松; 赵朋成
山东大学
ANALYSIS OF DYNAMIC DEVELOPMENT OF SURFACE DEPRESSION IN FULL-PENETRATED WELDPOOL
ChuanSong Wu;
山东大学
引用本文:

武传松; 赵朋成 . 熔透熔池表面下塌变形的动态演变过程分析[J]. 金属学报, 2006, 42(8): 865-869 .
, . ANALYSIS OF DYNAMIC DEVELOPMENT OF SURFACE DEPRESSION IN FULL-PENETRATED WELDPOOL[J]. Acta Metall Sin, 2006, 42(8): 865-869 .

全文: PDF(595 KB)  
摘要: 根据熔池表面下塌变形的三维信息描述了工件的熔透程度. 利用所建立的TIG(钨极惰性气体保护电弧焊)焊接熔池形态瞬时行为的数学模型, 对准稳态情况下当焊接工艺参数发生突变时熔透熔池表面下塌变形的动态演变过程进行了数值模拟, 得出了指导焊接熔透控制系统设计的基础数据. 工艺实验结果表明,熔池上、下表面变形量的计算结果与实测数据基本吻合.
关键词 熔透熔池表面下塌变形动态演变    
Abstract:To describe the transient transformation process of surface depression of full-penetrated weldpool, a sudden variation of welding process parameters (welding current and welding speed) at some moment when the weldpool has reached quasi-steady state simulates the disturbance during practical welding process. Through employing the developed model for transient behaviors of tungsten-inert-gas arc weldpool, the dynamic transformation process of surface depression of full-penetrated weldpool after a sudden variation of welding process parameters in quasi-steady state is numerically simulated, and basic data are obtained to guide designing weld penetration control system. The welding experiment results show that the predicted surface depression for both top and bottom sides of weldpool is in agreement with the measured one.
Key wordsfull-penetrated weldpool    surface depression    dynamic development
收稿日期: 2005-11-01     
ZTFLH:  TG401  
[1]Zhao P C,Wu C S.Int J Join Mater,2003;15:9
[2]Friedman E.Weld J,1978;57(Suppl.):161
[3]Lin M L,Eagar T W.Weld J,1985;64(Suppl.):163
[4]Rokhlin S I,Guu A C.Weld J,1993;72(Suppl.):381
[5]Kovacevic R,Zhang Y M.ASME J Manuf Sci Eng,1997;119:161
[6]Kou S,Wang Y H.Metall Trans,1986;17A:2271
[7]Tsao K C,Wu C S.Weld J,1988:67(Suppl.):70
[8]Wu C S,Cao Z N,Wu L.Acta Metall Sin (Engl Lett),1993;6B:130
[9]Choo R T C,Szekely J,David S A.Metall Trans,1992;23B:371
[10]Chen Y,David S A,Zacharia T,Cremers C J.Numer Heat Transfer,1998;33:599
[11]He X,Fuerschbach P W,DebRoy T.J Phys D:Appl Phys,2003;36:1388
[12]Fan H G,Tsai H L,Na S J.Int J Heat Mass Transfer,2001;44:417
[13]Sun J S,Wu C S.Acta Phys Sin,2002;51:286(孙俊生,武传松.物理学报,2002;51:286)
[14]Wu C S,Yan F J.Modell Simul Mater Sci Eng,2004;12:13
[15]Zacharia T,Eraslan A H,Aidun D K.Weld J,1988;67(Suppl.):53
[16]Zacharia T,Eraslan A H,Aidun D K,David S A.Metall Trans,1989;20B:645
[17]Zhao P C,Wu C S,Zhang Y M.Modell Simul Mater Sci Eng,2004;12:765
[18]Wu C S,Zhao P C,Zhang Y M.Weld J,2004;83(Suppl.):330
[19]Tsai N S,Eagar T W.Metall Trans,1985;16B:841
[1] 武传松;曹振宁;吴林. 熔透情况下三维TIG焊接熔池流场与热场的数值分析[J]. 金属学报, 1992, 28(10): 47-52.