Please wait a minute...
金属学报  2006, Vol. 42 Issue (4): 389-393     
  论文 本期目录 | 过刊浏览 |
调制结构对TiN/TaN多层膜的生长行为及力学性能的影响
赵阳; 王 娟; 徐晓明;张庆瑜
大连理工大学
Influence of modulation structure on the growth behavior, structural characterization and mechanical properties of TiN/TaN multilayers
Qingyu Zhang
大连理工大学
引用本文:

赵阳; 王娟; 徐晓明; 张庆瑜 . 调制结构对TiN/TaN多层膜的生长行为及力学性能的影响[J]. 金属学报, 2006, 42(4): 389-393 .
, , , . Influence of modulation structure on the growth behavior, structural characterization and mechanical properties of TiN/TaN multilayers[J]. Acta Metall Sin, 2006, 42(4): 389-393 .

全文: PDF(830 KB)  
摘要: 利用反应磁控溅射方法,设计并制备了调制周期相同而调制比的TiN/TaN多层膜。利用X射线衍射仪、高分辨透射电子显微镜和纳米压痕仪对多层膜的结构、微观状态和力学性能进行乐系统表征。结果表明:调制结构不仅改变多层膜的生长速率,而且能导致多层膜择优生长取向的变化;界面应力的存在使得薄膜生长速率随沉积层厚度的增加而下降;结构分析发现:在TiN/TaN多层膜中存在着独立外延生长的(111)和(100)两种取向的调制结构,这两种调制结构的调制周期存在着一定的差异;在我们的实验条件下,调制周期为6 nm左右的TiN/TaN多层膜,其硬度提高约50%;在调制比为3:1时,硬度最大值为34.2GPa,弹性模量为344.9GPa;此外,我们根据结构和力学性能的分析结果,讨论了TiN/TaN多层膜的超硬机制。
关键词 TiN/TaN多层膜生长行为结构特征力学特性    
Abstract:TiN/TaN multilayers with same period and different modulation ratios have been fabricated using reactive magnetron sputtering methods. X-ray diffraction and high-resolution transmission electron microscopy were used to determine the structural characterization of the multilayers and their mechanical properties were measured by a nanoindentation method. The results show that modulation structure affects both the growth rate and preferred growth direction. With the increase of layer thickness (TiN or TaN), the growth rate of the layer decreases. We also find that two kinds of grains with (111) and (100) normal to the films grow epitaxtially with slightly different modulation periods. The hardness and moduli of TiN/TaN multilayers increase by about 50% and 30%, respectively. The maximum values appear at the modulation ratio of 3:1, hardness is 34.2 GPa and modulus is 344.9 GPa. Based on the structure analysis and the mechanical properties, the hardening mechanism in TiN/TaN multilayers are discussed in the paper.
Key wordsTiN/TaN multilayers    growth behavior    structural characterization    mechanical properties
收稿日期: 2005-07-15     
ZTFLH:  O484  
[1] Yashar P C, Sproul W D. Vacuum, 1999; 55: 179
[2] Pankov V, Evstigneev M, Prince R H. J Appl Phys, 2002; 92: 4255
[3] Xu J H, Kamiko M, Zhou Y M, Yamamoto R. J Appl Phys, 2001; 89: 3674
[4] Mirkarimi P B, Hultman L, Barnett S A. Appl Phys Lett, 1990; 57: 2654
[5] Chu X, Barnett S A, Wong M S, Sproul W D. Surf Coatings Technol, 1993; 57: 13
[6] Nordina M, Ericsonb F. Thin Solid Films, 2001; 385: 174
[7] Lao J J, Kong M, Zhang H J, Li G Y. Ada Phys Sin, 2004; 53: 1961 (劳技军,孔明,张惠娟,李戈扬.物理学报,2004;53:1961)
[8] Wei L, Mei H, Shao N, Kong M, Li G, Li J. Appl Phys Lett, 2005; 86: 21919
[9] Pankov V, Evstigneev M, Prince R H. J Appl Phys, 2002; 92: 4255
[10] Boutos V T, Sanjines R, Karimi A. Surf Coat Technol, 2004; 188: 409
[11] Pharr G M, Oliver W C, Brotzen F R. J Mater Res, 1992; 7: 613
[12] Kato M, Moti T, Schwartz L H. Acta Metall, 1980; 28: 285
[13] Xu J H, Li G Y, Gu M Y. Acta Metall Sin, 1999; 35: 1214 (许俊华,李戈扬,顾明元.金属学报, 1999;35:1214)q
[1] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[2] 张旭东,王绍青. Al3Sc和Al3Zr金属间化合物热力学性质的第一性原理计算[J]. 金属学报, 2013, 29(4): 501-505.
[3] 白清顺 童振 梁迎春 陈家轩 王治国. 单晶Cu纳米杆拉伸力学特性的尺寸依赖性模拟[J]. 金属学报, 2010, 46(10): 1173-1180.