Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 985-988     
  论文 本期目录 | 过刊浏览 |
PCVD 制备新型Ti-Si-C-N纳米复合超硬薄膜及其微观结构表征
郭 岩 畅庚榕 马胜利 徐可为
西安交通大学金属材料强度国家重点实验室;西安710049
PREPARATION AND MICROSTRUCTURE CHARACTERISTICS OF SUPER-HARD NANOCOMPOSITE Ti-Si-C-N COATING DEPOSITED BY PULSED DC PCVD
GUOYan; CHANG Gengrong; MA Shengli; XU Kewei
State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049
引用本文:

郭岩; 畅庚榕; 马胜利; 徐可为 . PCVD 制备新型Ti-Si-C-N纳米复合超硬薄膜及其微观结构表征[J]. 金属学报, 2005, 41(9): 985-988 .
, , , . PREPARATION AND MICROSTRUCTURE CHARACTERISTICS OF SUPER-HARD NANOCOMPOSITE Ti-Si-C-N COATING DEPOSITED BY PULSED DC PCVD[J]. Acta Metall Sin, 2005, 41(9): 985-988 .

全文: PDF(263 KB)  
摘要: 用脉冲直流等离子体增强化学气相沉积 (PCVD) 方法,在高速钢试样表面沉积出一种新型Ti-Si-C-N薄膜材料. 研究了不同SiCl4流量对薄膜成分、微观组织形貌以及薄膜晶体结构的影响. X射线衍射 (XRD)、X射线光电子能谱 (XPS)、透射电子显微镜 (TEM) 和扫描电子显微镜 (SEM) 分析结果表明: Ti-Si-C-N薄膜是由Ti(C, N)/a-C/a-Si3N4组成的纳米复合结构,薄膜的晶粒尺寸在225 nm范围内; 当Ti-Si-C-N薄膜中N含量很少时,Ti(C, N) 结构转变为TiC, 薄膜的表面形貌由颗粒状转变为粗条状.
关键词 Ti-Si-C-NPCVD纳米复合薄膜     
Abstract:Using an industrial pulsed DC plasma chemical vapor deposition set-up, Ti-Si-C-N coatings were deposited on substrate of high speed steel. The effect of SiCl4 flow rate on chemical composition, microstructure and phases in Ti-Si-C-N coatings was explored by means of XRD, XPS, TEM and SEM. It is suggested that Ti-Si-C-N coatings are of nanocomposite structure composed of nc-Ti(C, N)/a-C/a-Si3N4. The crystalline sizes are in the range of 2-25 nm. When nitrogen content in the coatings was very low, Ti(C, N) changed to TiC and the surface morphologies of Ti-Si-C-N coatings changed from granular grains to strip-shaped grains.
Key wordsTi-Si-C-N    PCVD    nanocomposite coating    microstructure
收稿日期: 2005-01-31     
ZTFLH:  TG174.44  
[1] Ma D Y,Ma S L, Xu K W. Surf Coat Technol, 2004; 184:182
[2] Ma D Y, Ma S L, Xu K W.Acta Metall Sin,2004;40: 1037 (马大衍,马胜利,徐可为.金属学报, 2004;40:1037)
[3] Ma D Y, Ma S L , Xu K W. Acta Metall Sin,2003;39: 1047 (马大衍,马胜利,徐可为.金属学报, 2003;39:1047)
[4] Heim D, Holler F, Mitterer C. Surf Coat Technol,1999; 116: 530
[5] Veprek S. Thin Solid Films,1995;268:64
[6] Ma D Y, Ma S L, Xu K W. Tribology, 2003; 215: 476 (马大衍,马胜利,徐可为.摩擦学报,2003;23:476)
[7] Ma S L, Ma D Y, Xu K W. Tribology, 2003; 23: 179 (马胜利,马大衍,徐可为.摩擦学报, 2003;23:179)
[8] Veprek S. Vaccum, 2002;67:443
[9] Ma S L, Xu K W. Acta Metall Sin, 2004;40:669 (马胜利,徐可为.金属学报,2004;40:669)
[10] Ma S L, Xu K W, Jie W. J Vac Sci Technol, 2004; 22B: 1694
[11] Karvankova P. Doctor Degree Thesis,Technical Univer sity Munich, Germany, 2003
[12] Niu X P. Master Degree Thesis, Xi'an Jiaotong University, 2004 (牛新平.西安交通大学硕士学位论文, 2004)
[1] 唐瑞鹤 杨志刚 张弛 杨白 刘晓芳 于荣海. Co-C纳米复合薄膜的微结构、磁性能和磁输运特性[J]. 金属学报, 2011, 47(4): 469-474.
[2] 牛建钢 王宝军 王翠表 田晓. 第一性原理计算TiN(111)/BN/TiN(111)界面的电子结构、成键特性和结合强度[J]. 金属学报, 2009, 45(10): 1185-1189.
[3] 郭岩; 徐彬; 吴贵智; 马胜利; 徐可为 . PCVD法制备的Ti--Si--C--N纳米复合超硬薄膜的高温氧化行为[J]. 金属学报, 2007, 43(2): 159-164 .
[4] 郭岩; 畅庚榕; 吴贵智; 马胜利; 徐可为 . 新型Ti-Si-C-N纳米复合超硬薄膜的高温热稳定性[J]. 金属学报, 2006, 42(2): 172-176 .
[5] 马大衍; 马胜利; 徐可为; S.Veprek . 残余氧对TiN+Si3N4纳米复合薄膜硬度的影响[J]. 金属学报, 2004, 40(10): 1037-1040 .
[6] 马大衍; 王昕; 马胜利; 徐可为 . Ti-Si-N纳米复相薄膜及Si含量对脉冲直流PCVD镀膜质量的影响[J]. 金属学报, 2003, 39(10): 1047-1050 .
[7] 马胜利; 李雁淮; 徐可为 . 脉冲电压幅值对等离子体化学气相沉积TiN薄膜膜基结合行为的影响[J]. 金属学报, 2000, 36(1): 77-80 .
[8] 赵程;彭红瑞;李世直. 等离子体化学气相沉积Ti-N-C膜的研究[J]. 金属学报, 1993, 29(1): 87-92.