Please wait a minute...
金属学报  2005, Vol. 41 Issue (7): 680-684     
  论文 本期目录 | 过刊浏览 |
Co41Ni32Al27-xSix合金的马氏体相变和磁性转变
罗丰华 及川胜成 石田清仁
中南大学粉末冶金国家重点实验室; 长沙 410083
Martensitic Transformation and Magnetic Transition of Co41Ni32Al27-xSix Alloy
LUO Fenghua; OIKAWA Katsunari; ISHIDA Kiyohito
State Key Laboratory for Powder Metallurgy; Central South University; Changsha 410083
引用本文:

罗丰华; 及川胜成; 石田清仁 . Co41Ni32Al27-xSix合金的马氏体相变和磁性转变[J]. 金属学报, 2005, 41(7): 680-684 .
, , . Martensitic Transformation and Magnetic Transition of Co41Ni32Al27-xSix Alloy[J]. Acta Metall Sin, 2005, 41(7): 680-684 .

全文: PDF(271 KB)  
摘要: 利用金相显微组织分析技术、示差扫描量热法(DSC)和振动磁力计(VSM), 考察了 Co41Ni32Al27-xSix合金中Si元素含量 x对马氏体相变和铁磁性转变的影响, 用X射线衍射方 法分析马氏体相的结构类型. 增加x能够显著提高合金的 马氏体相变温度, 并且同时提高铁 磁性转变Curie点;在x<5的范围内, x增加1 可以造成马氏体相变温度提高50---60 K, 同 时Curie点提高大约10 K;马氏体相的晶体结构 仍然是L10型有序结构, 但是随着$x$的增加, 单胞体积减小. 讨论了马氏体相变温度和Curie点同时提高的原因.
关键词 铁磁性记忆合金Co--Ni--Al--Si合金    
Abstract:The effects of Si on the martensitic transformation and magnetic transition of Co41Ni32Al27-xSix alloys were investigated by optical micrography, DSC and VSM methods. The structure type of martensitic phase was determined by X--ray diffraction. Martensitic transformation temperatures of Co41Ni32Al27 alloys are obviously elevated by the substitute of Si for Al element, the addition of 1% Si can increase the martensitic transformation temperature by about 50 K. Curie points are also increased with increasing of Si content, 1% Si can increase the Curie temperature by 10 K. Martensites are all of ordered L10structure, but the unit cell volumes are decreased with increasing Si content. The reason for above results were discussed.
Key wordsferromagnetic shape memory alloy    Co--Ni--Al--Si alloy
收稿日期: 2004-11-25     
ZTFLH:  TG139.6  
[1] Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C. Appl Phys Lett, 1996; 69: 1966
[2] Murray S J, Marioni M, Kukla A, Robinson J, O'Handley R C, Allem S M. J Appl Phys, 2000; 87: 5774
[3] Murray S J, Marioni M, Allen S M, O'Handley R C. Appl Phys Lett, 2000; 77: 886
[4] Gejima F, Sutou Y, Kainuma R, Ishida K. Metall Mater Trans, 1999; 30A: 2721
[5] Kainuma R, Gejima F, Sutou Y, Ohnuma Y, Ishida K. Mater Trans JIM, 2000; 41: 943
[6] Fujita A, Fukamichi K, Gejima F, Kainuma R, Ishida K. Appl Phys Lett, 2000; 77: 3054
[7] James R D, Wuttig M. Philos Mag, 1998; 77A: 1273
[8] Furuya Y, Hangood N W, Kimura H, Watanabe T. Mater Trans JIM, 1998; 39: 1248
[9] Kakeshita T, Takeuchi T, Fukuda T, Saburi T, Oshima R, Muto S, Kishio K. Mater Trans JIM, 2000; 41: 882
[10] Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K. Mater Trans JIM, 2001; 42: 2472
[11] Wuttig M, Li J, Craciunescu C. Scr Mater, 2001; 44: 2393
[12] Oikawa K, Ota T, Ohmori T, Tanaka Y, Morito H, Fujita A, Kainuma R, Fukamichi K, Ishida K. Appl Phys Lett, 2002; 81: 5201
[13] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G. Appl Phys Lett, 2003; 82: 424
[14] Kainuma R, Ise M, Jia C C, Ohtani H, Ishida K. Intermetallics, 1996; 4: S151
[15] Karaca H E, Karaman I, Lagoudas D C, Maier H J, Chumlyakov Y I. Scr Mater, 2003; 49: 831
[16] Oikawa K, Wulff L, lijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K. Appl Phys Lett, 2001; 79: 3290
[17] Fujita A, Morito H, Kudo T, Fukamichi K, Kainuma R, Ishida K, Oikawa K. Mater Trans JIM, 2003; 44: 2180
[18] Morito H, Fujita A, Fukamichi K, Kainuma R, Ishida K. Appl Phys Lett, 2002; 81: 1657
[19] Murakami Y, Shindo D, Oikawa K, Kainuma R, Ishida K. Ada Mater, 2002; 50: 2173
[20] Tanaka Y, Ohmori T, Oikawa K, Kainuma R, Ishida K. Mater Trans JIM, 2004; 45: 427
[21] Liang Y, Sutou Y, Wada T, Lee G, Taya M, Mori T. Scr Mater, 2003; 48: 1415
[22] Lefebvre F, Mentzen B F, Bosselet F, Viala J C. Colloids Surfaces, 1999; 158A: 121
[23] Oikawa K, Ota T, Sutou Y, Ohmori T, Kainuma R, Ishida K. Mater Trans JIM, 2000; 43: 2360
[24] Wutting M, Liu L, Tsuchiya K, James R D. J Appl Phys, 2000; 87: 4707
[25] Hames F A. J Appl Phys, 1960; 31: 370S
[1] 罗丰华; 陈嘉砚; 及川胜男; 石田清仁 . Ni52Ga28Fe20-xCox合金的马氏体相变和磁性转变[J]. 金属学报, 2006, 42(1): 93-98 .