Please wait a minute...
金属学报  2004, Vol. 40 Issue (1): 77-82     
  论文 本期目录 | 过刊浏览 |
三种湍流模型对Al电解槽内Al液流场预测的比较及其工业测试
周萍; 梅炽; 周乃君
中南大学能源与动力工程学院
Comparison Of Three Turbulent Model Predictions Of Metal Flow In Aluminum Reduction Cells And Industrial Measurements
ZHOU Ping; MEI Chi; ZHOU Naijun
School of Energy and Power Engineering; Central South University
引用本文:

周萍; 梅炽; 周乃君 . 三种湍流模型对Al电解槽内Al液流场预测的比较及其工业测试[J]. 金属学报, 2004, 40(1): 77-82 .
, , . Comparison Of Three Turbulent Model Predictions Of Metal Flow In Aluminum Reduction Cells And Industrial Measurements[J]. Acta Metall Sin, 2004, 40(1): 77-82 .

全文: PDF(196 KB)  
摘要: 模型与RNG k--ε模型分别对三种不同进电方式(四点进电的200 kA槽、两点进电的160 kA槽以及三点进电的80 kA槽)的预焙阳极Al电解槽内的Al液流场进行了数值仿真, 并且应用铁棒溶蚀法对相应工况下的Al液流场进行了工业测试. 通过对计算结果和测试结果的比较与分析,可以得出:与标准k--ε模型相比较, 低Reynolds数模型具有较小的湍流粘度;标准k--ε模型与RNG模型用于Al液流场的数值仿真时, 其计算结果均有较高的可靠性. 并初步得出在电流强度大于80 kA的Al电解槽中, Al液流动的计算不适宜应用低Reynolds数模型.
关键词 湍流模型Al电解槽    
Abstract:Standard k--ε,low Reynolds' number Jones--Launder k--ε and RNG models were adopted to simulate the flow field of metal melt in three different prebaked anode cell designs, i.e.80 kA cell with three anode risers, 160 kA cell with two anode risers and 200 kA cell with four side anode risers. Moreover, the melt velocities were measured using iron rod dissolution method. The simulating results were discussed and were compared with measuring data. It is shown that the turbulent viscosity in low Reynolds' number model is smaller than that in standard k--ε model. Standard k--ε and RNG model predict better the flow field of metal melt. Furthermore, the preliminary conclusion is that the low Reynolds' number model is not suitable to calculate metal melt flow in cells if the current is greater than 80 kA.
Key wordsZHOU Ping    MEI Chi    ZHOU Naijun
收稿日期: 2003-01-28     
ZTFLH:  TF804.4  
[1] Qiu Z X. Smelting Aluminum in Prebaked Cell. Beijing: Metallurgy Industry Press, 1988:273(邱竹贤.预焙槽炼铝.北京:冶金工业出版社,1988:273)
[2] Mei C. Simulation and Optimization of Non-Ferrous Metallurgical Furnaces. Beijing: Metallurgy Industry Press, 2001: 12, 152(梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001:12,152)
[3] Lan X K, Khodadadi J M, Shen F. Metall Mater Trans, 1997; 28B: 321
[4] Qin K F, Fan J R. Theory and Calculation of Gas-Solid Multi-Phase Flow in Engineering. Hangzhou: Zhejiang University Press, 1989:47(岑可法,樊建人.工程气固多相流动的理论.杭州:浙江大学出版社,1989:47)
[5] Ai D K. Bohner H O. Proceedings of the Technical Sessions (114th TMS Annual Meeting, Light Metals). Warrendale, Pennsylvania: Metallurgical Society of AIME, 1985:593
[6] Qiu Z X. Aluminum Electrolysis. Beijing: Metallurgy Industry Press, 1995:217(邱竹贤.铝电解.北京:冶金工业出版社,1995:217)
[7] Yakhot V, Orszag S A. J Sci Computing, 1986; 1(1) : 3
[8] Li L, LI Y L. Adv Hydrodynam, 2000; 11:357(李玲,李玉梁.水力学进展,2000;11:357)
[9] Zhou P, Mei C, Zhou N J. Light Met, 2002; (8) : 29(周萍,梅炽,周乃君.轻金属,2002;(8) :29)
[10] Zhou P. PhD Thesis, Center South University, Changsha, 2002(周萍,中南大学博士学位论文,长沙,2002)
[11] Tarapore E D. In: Peterson W S ed., Proceedings of the Technical Sessions (108th TMS Annual Meeting, Light Metals). Warrendale, Pennsylvania: Metallurgical Society of AIME, 1979:541
[12] Cai Q F, Mei C, Shen H Y. Light Metals, 1993; (9) : 29(蔡祺风,梅炽,沈洪远.轻金属,1993;(9) :29)
[1] 朱苗勇;泽田郁夫. 连铸中间包内三维湍流流动的数值模拟[J]. 金属学报, 1997, 33(11): 1215-1221.