Please wait a minute...
金属学报  1989, Vol. 25 Issue (3): 45-50    
  论文 本期目录 | 过刊浏览 |
疲劳软化的低能位错结构
柴惠芬;汪立勤;C.LAIRD
西安交通大学;西安交通大学;UniversityofPennsylvania
LOW ENERGY DISLOCATION STRUCTURES DUE TO FATIGUE SOFTENING
CHAI Huifen;WANG Liqin;C. LAIRD Xi'an Jiaotong University University of Pennsylvania; U. S. A
引用本文:

柴惠芬;汪立勤;C.LAIRD. 疲劳软化的低能位错结构[J]. 金属学报, 1989, 25(3): 45-50.
, , . LOW ENERGY DISLOCATION STRUCTURES DUE TO FATIGUE SOFTENING[J]. Acta Metall Sin, 1989, 25(3): 45-50.

全文: PDF(1944 KB)  
摘要: 用电子衍衬技术研究了预变形6%的1018钢在疲劳过程中位错组态的演变。晶体中位错十分可动,变形态的松散胞迅速变化为主胞壁大致沿{100}的棋盘结构,再逐渐演变为位错偶墙及迷宫结构的低能位错组态。bcc和fcc的迷宫特征以及偶墙取向相似,说明位错线的滑移几何特性及相应的位错细节不是软化过程的控制因素,位错组态的能量状态对软化有重要影响。讨论了周期载荷下胞间位向差的消失以及内应力下降的过程。
关键词 1018钢疲劳软化位错组态    
Abstract:The evolution of dislocation structures in 6% prestrained steel 1018during fatigue has been studied by TEM. The dislocations are quite movable, theloose cells quickly change to "checkboard" structures, in which the main cell wallslie about{100}. Then, the low energy dislocation structures-dipolar walls and laby-rinth structures are evolved. The characteristic of labyrinth and the orientation of di-polar walls are quite similar to f. c. c. crystal, it indicates the energy state of systemand the moving ability of dislocations are important factors affecting softening pro-cess, rather than the slip geometric characters of dislocations and details of disloca-tions. The decreasing in misorientation between adjoining cells and internal stressare discussed.
Key wordssteel 1018    fatigue softening    dislocation configuration
收稿日期: 1989-03-18     
1 Ramaswami B, Lau T W F. Mater Sci Eng, 1980; 46: 221
2 Kuhlmann-Wilsdorf D. Metall Trans, 1985; 16A: 2091
3 Chai Huifen (柴惠芬), Laird C. Mater Sci Eng, 1987; 93: 159
4 Foxall R A, Duesbery M S, Hitsch P B. Can J Phys, 1967; 45: 607
5 Kuhlmann-Wilsdorf D. In: Thompson A W ed, Workhardening in Tension and Fatigue. AIME, 1977: 1
6 Ackermann F, Kubin L P, Lepinoux J, Mughrabi H. Acta Metall, 1984; 32: 715
7 Charsley P. Mater Sci Eng, 1981; 47: 181
8 Jin N Y, Winter A T. Acta Metall, 1984; 32: 1173
9 Dickson J I, Boutin J, Lesperance G. Acta Metall, 1986; 34: 150
[1] 宋衎,喻凯,林鑫,陈静,杨海欧,黄卫东. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能*[J]. 金属学报, 2015, 51(8): 935-942.
[2] 潘昆明,张来启,王礞,林均品. Mo-Si-B三元系中T2相的脆-韧转变行为[J]. 金属学报, 2013, 49(11): 1392-1398.
[3] 丁智 张军 王常帅 苏海军 刘林 傅恒志. DZ125镍基高温合金高温持久断裂后的位错组态[J]. 金属学报, 2011, 47(1): 47-52.
[4] 李勇; 李守新; 李广义 . 疲劳过程中垂直晶界Cu双晶形变带中位错组态与裂纹形核[J]. 金属学报, 2004, 40(5): 462-466 .
[5] 李勇; 李守新; 李广义 . 晶粒组元沿晶界旋转的铜双晶在循环变形中的滑移形貌与位错组态[J]. 金属学报, 2002, 38(8): 819-824 .
[6] 张哲峰;王中光;苏会和. 垂直晶界钢双晶体的循环形变行为[J]. 金属学报, 1998, 34(8): 841-846.
[7] 肖林;匡震邦. 非比例加载下Zr-4合金的宏观响应及其微观机理[J]. 金属学报, 1998, 34(3): 242-248.
[8] 刘国东;朱震刚;王静. 高纯铝单晶在拉压疲劳早期过程中的行为[J]. 金属学报, 1996, 32(5): 510-515.
[9] 柴惠芬;阮征;范群成. 滑移模式对预变形材料循环力学行为的影响[J]. 金属学报, 1993, 29(4): 7-12.
[10] 范群成;柴惠芬;仝明信. 冷变形多晶Cu的疲劳软化行为及其门槛[J]. 金属学报, 1990, 26(5): 56-61.
[11] 姚可夫;唐迺泳;陈南平. 双相不锈钢中裂纹尖端塑性变形行为的透射电镜原位观察[J]. 金属学报, 1989, 25(3): 57-62.
[12] 金能韫. 面心立方晶体的循环形变及其位错反应模型 Ⅰ Cu晶体的循环形变[J]. 金属学报, 1988, 24(5): 299-310.