Please wait a minute...
金属学报  1987, Vol. 23 Issue (6): 477-483    
  论文 本期目录 | 过刊浏览 |
回火马氏体脆性的机制
徐祖耀;曹四维
上海交通大学;上海交通大学
MECHANISM OF TEMPER MARTENSITE EMBRITTLEMENT
by XU Zuyao (T. Y. Hsu); CAO Siwei (Shanghai Jiao Tong University) (Manuscript received 25 March; 1985)
引用本文:

徐祖耀;曹四维. 回火马氏体脆性的机制[J]. 金属学报, 1987, 23(6): 477-483.
, . MECHANISM OF TEMPER MARTENSITE EMBRITTLEMENT[J]. Acta Metall Sin, 1987, 23(6): 477-483.

全文: PDF(444 KB)  
摘要: 计算了残余奥氏体分解和马氏体分解的相变总驱动力,渗碳体自马氏体析出和自奥氏体析出的形核驱动力、长大速率和孕育期。计算结果揭示:尽管奥氏体分解的驱动力大于马氏体分解约一个数量级,但渗碳体自马氏体析出的形核驱动力远大于自奥氏体的析出,长大速率约大两个数量级,孕育期比奥氏体析出的约小一个数量级。可见在低温短时回火时,渗碳体先从马氏体内析出;当回火时间较长时,由于奥氏体分解的相变总驱动力较大,以及由于马氏体条内析出渗碳体引起的收缩,促使条间残余奥氏体的分解,形成回火马氏体脆性。因此当不计及杂质(及渗碳体)在原始奥氏体晶界的偏聚对,回火马氏体脆性的机制应为这两个分解先后互相关联的过程。
Abstract:The total driving force for the decomposition of retained austensite and that of martensite, the driving force for nucleation of cementite, the growth rate as well as the incubation period of the formation of cementite that precipitates from martensite and austenite are evaluated. The results reveal that in spite of the fact that the driving force for the decomposition of martensite is one order of magnitude less than that of austenite, the driving force for the nucleation of cementite that precipitates from martensite is far greater than that from austenite and the incubation period of the formation of cementite as it precipitates from martensite is one order of magnitude less than that from austenite. It is obvious that during the short time tempering, cementite firstly precipitates from martensite, while upon tempering with long duration, since the total driving force for the decomposition of the retained austenite is greater and the contraction of martensite resulted from its decomposition would enhance the decomposition of interlath retained austenite, the precipitation of cementite from austenite leads the temper martensite embrittlement-Therefore, as the segregation of the impurities(and cementite) on the grain boundary is not taken into consideration, the mechanism of the TME may be assumed to be the combination of the two related decomposition processes.
收稿日期: 1987-06-18     
1 Grossmann M A, Trans AIME, 1946; 167: 39
2 Klingler L J, Barnett W J, Frohmberg R P, Troiano A R. Trans ASM, 1954; 46: 1557
3 Bandyopadhyay N, McMahon C J Jr. Metall Trans, 1983; 14A: 1313
4 Zia-Ebrahimi F, Krauss G. Acta Metall, 1984; 32: 1767
5 Thomas G. Metall Trans, 1978; 9A: 439
6 Horn RM, Ritchie R O. Metall Trans, 1978; 9A: 1039
7 Sarikaya M, Jhingan A K, Thomas G, Metall Trans, 1983; 14A: 1121
8 Rao B V, Thomas G. In: Proc Int Conf on Martensitic Transformations, Cambridge, MA, 1979: 12
9 Thomas G, Sarikaya M. In: Aaronson H I et al eds., Proc Int Conf on Solid-Solid Phase Transformations, 1981, TMS-AIME, 1982: 999
10 徐祖耀,李学敏.金属学报,1983;19:A83,A505
11 Hsu T Y(徐祖耀),Li Xuemin(李学敏).Scr Metall,1983:17:1285
12 Kaufman L, Radcliffe S V, Cohen M, In: Zackcy V F et al eds., Decomposition of Austenite by Diffussional Processes, New York: Interscience, 1962: 313-352
13 Aaronson H I, Domian H A, Pound GM. Trans Metall Soc AIME, 1966; 236: 753
14 Shiflet G J, Bradley J R, Aaronson H I. Metall Trans, 1978; 9A: 999
15 Hsu T Y(徐祖耀), Mou Yiwen(牟翊文). Acta Metall, 1984: 32: 1469
16 Kaufman L, Clougherty E V, Weiss R J. Acta Metall, 1963; 11: 323
17 Bhadeshia H K D H. Met Sci, 1980; 14: 230
18 Lobo J A, Geiger G H. Metall Trans, 1976; 7A: 1347
19 Bosze W P, Trivedi R. Metall Trans, 1974; 5: 511
20 徐祖耀.上海金属(有色分册),1981;(4) :1
21 Feder J, Russell R C, Kothe J. Pound G M. Advance in Physics, Phil Mag, Supplements, 1966; 15: 111
22 西山善次.制铁研究,1971;(273) :1
No related articles found!