Please wait a minute...
金属学报  1985, Vol. 21 Issue (1): 54-63    
  论文 本期目录 | 过刊浏览 |
应变能区分法及其对GH33A与1Cr18Ni9Ti的应用
何晋瑞;段作祥;宁有连;赵迪
北京航空材料研究所;北京航空材料研究所;北京航空材料研究所;北京航空材料研究所
STRAIN ENERGY PARTITIONING AND ITS APPLICATION TO GH33A Ni-BASE SUPERALLOY AND 1Cr18Ni9Ti STAINLESS STEEL
HE Jinrui;DUAN Zuoxiang;NING Youlian;ZHAO Di Beijing Institute of Aeronautical Materials
引用本文:

何晋瑞;段作祥;宁有连;赵迪. 应变能区分法及其对GH33A与1Cr18Ni9Ti的应用[J]. 金属学报, 1985, 21(1): 54-63.
, , , . STRAIN ENERGY PARTITIONING AND ITS APPLICATION TO GH33A Ni-BASE SUPERALLOY AND 1Cr18Ni9Ti STAINLESS STEEL[J]. Acta Metall Sin, 1985, 21(1): 54-63.

全文: PDF(815 KB)  
摘要: 本文提出的应变能区分法(SEP)是应变范围区分法(SRP)的修正,用以预测700℃下的GH33A镍基合金和600℃下的1Crl8Ni9Ti不锈钢的蠕变-疲劳裂纹起始寿命.该方法指出:寿命不仅是蠕变分量(△εc)和塑变分量(Aεp)的函数,同时又是最大拉伸应力(σ_T)的函数,即SRP中的应变分量(△ε(?))被SEP中的应变能分量(σ_T△ε_(ij))所取代.使用SEP,上述两种合金的高温低循环疲劳数据的相关值与预测值均在观测值两倍之内;而使用SRP时,GH33A的某些数据的相关值与预测值,却大于观测值的2倍.此外,还用8种其它高强度、低延性合金对SEP和SRP进行评价,结果表明,SEP的预测能力比SRP有所改进.
Abstract:The strain energy partitioning(SEP)approach,namely,a modification ofstrain-range partitioning(SRP),has been developed to predict the creep fatiguecrack initiation life for GH33A Ni-base superalloy at 700℃ and 1Cr18Ni9Ti stain-less steel at 600℃.It shows that the life can be predicted by two variables:themaximum tensile stress and the partitioned inelastic strain-range,i.e.,the strain-range component in SRP is substituted by the strain energy component in SEP.The low-cycle fatigue data at elevated temperature for these two given alloys arecorrelated and predicted to within a factor of 2 using SEP,while some numeralsof data for GH33A beyond the factor of 2 using SRP.In addition,the predica-bility of SEP versus SRP has been evaluated by 8 other alloys of high-strengthand low-ductility.It would seem that SEP is an improvement over SRP.
收稿日期: 1985-01-18     
1 Manson,S.S.,Advances in Creep Structures,Eds.Smith,A.I.;Nichlson,A.M.,Applied Science Publishers,London,1971,p.229.
2 Manson,S.S.,Int.J.Fract.Mech.,2(1966) ,№ 1,32.
3 Halford,G.R.;Manson,S.S.,ASM Trans.Q.,61(1968) ,№ 1,94.
4 Berling,J.T.;Coway,J.B.,Metall.Trans.,1(1970) ,600.
5 Snaeb,R.E.;Bui-Quoc,T.,Creep and Fatigue in Elevated-Temperatures Applications,Pro.Int.Conf.,IME-ASME-ASTM,Vol.1,Mechanical Engineering Publishers,London,1973,p.186.
6 Manson,S.S.,NASA TM X-67838,1971,p.1.
7 Coffin,L.F.Jr.,Symp.on Creep-Fatigue Interaction,Ed.Curran,R.M.,Metal Properties Council,New York,1976,p.349.
8 Ostergren,W.J.,ASTM Standardization News,4(1976) ,327.
9 Majumdar,S.;Maiya,P.S.,ANL-76-58,1976,p.1.
10 何晋瑞,未发表资料,1980.
11 宁友连,段作祥,第一届高温疲劳及高温应变测试技术讨论会论文摘要汇编,卷1,中国航空学会理化测试学组,成都,1982,p.148.
12 段作祥;宁友连,ibid.,卷1,1982 p.132.
13 Berstein,H.L.,AFML TR-79-4075,1979.
14 Manson,S.S.,AGARD CP-243,1978.
15 Hyzak,J.M.;Berstein,H.L.,AGARD CP-243,1978,p.5.
16 Halford,G.R.;Nachtigall,A.J.,15th Joint Propulsion Conf.,AIAA/SAE/ASME,1979,U.S.,p.10.
No related articles found!