Please wait a minute...
金属学报  1985, Vol. 21 Issue (1): 101-109    
  论文 本期目录 | 过刊浏览 |
金属板材在弹塑性形变过程中热场的有限元分析
李守新;黄毅;师昌绪
中国科学院金属研究所;中国科学院金属研究所;中国科学院金属研究所
THE FINITE ELEMENT ANALYSIS OF HEAT FIELD OF METAL SHEET DURING ELASTIC-PLASTIC DEFORMATION
LI Shouxin;HUANG Yi;SHI Changxu(C.H.Shih)Institute of Metal Research;Academia Sinica;Shenyang
引用本文:

李守新;黄毅;师昌绪. 金属板材在弹塑性形变过程中热场的有限元分析[J]. 金属学报, 1985, 21(1): 101-109.
, , . THE FINITE ELEMENT ANALYSIS OF HEAT FIELD OF METAL SHEET DURING ELASTIC-PLASTIC DEFORMATION[J]. Acta Metall Sin, 1985, 21(1): 101-109.

全文: PDF(893 KB)  
摘要: 本文应用有限元方法计算薄金属板材在弹塑性变形过程中产生的温度分布.设热传导系数在小变形时不变,采用Kelvin热传导方程式,通过有限元方法计算的热场结果与采用红外热成象测量的结果符合较好.这表明,由弹塑性变形产生的热效应能使用有限元方法来计算.
Abstract:The temperature distribution all over the metal thin sheet in the process ofelastic-plastic deformation was evaluated by the finite element analysis.With anassumption of almost lack of variance in thermal conductivity during less deforma-tion,the results of the heat field calculated from the finite element analysis usingKelvin's equation of thermal conductivity is in better agreement with that surveyedby an infrared camera.This calculation seems to be available for the thermal effectcaused by elastic-plastic deformation.
收稿日期: 1985-01-18     
1 Williams,J.G.,Appl.Mater.Res.,4(1965) ,№ 2. 104.
2 Weichert,R.;Schoenert,K.,J.Mech.Phys.Solids,22(1974) ,127.
3 Fung,Y.C.,Foundation of Solid Mechanics,London,Prentice-Hill Inc.,1965,p.388.
4 Dunlap,R.W.;Hucke,E.E.;Ragone,D.V.,Exp.Mech.,8(1968) ,№ 4,154.
5 Huang,Y.(黄毅);Li,S.X.(李守新);Shih,C.H.(师昌绪),to be presented in Sixth Int.Conf.on Fracture,1984.
6 Nabarro,F.R.N.,Theory of Crystal Dislocation,Oxford University Press,U.S.A.,1967,p.692.
7 Tay,A.O.;Oxley,P.L.B.,Finite Element Methods in Engineering,Proc.1976 Int.Conf.on Finite Element Methods in Engineering,Australia,1976,p.42. 1-42. 21.
8 Marcal,P.V.;King,I.P.,Int.J.Mech.Sci.,9(1967) ,№ 3,143.
9 李大潜等编,有限元素法续讲,科学出版社,1979,p.191.
10 华东水利学院,弹性力学的有限元法,水利水电出版社,1978,p.88./
No related articles found!