Please wait a minute...
金属学报  1981, Vol. 17 Issue (2): 168-176    
  论文 本期目录 | 过刊浏览 |
偏克分子数量■_0恒定条件下多元系的热力学——Здановский型和Turkdogan型等(?)_0规则的热力学意义
王之昌
中国科学院上海原子核研究所
THERMODYNAMICS OF MULTICOMPONENT SYSTEMS WITH CONSTANT PARTIAL MOLAR QUANTITY■_0——Thermodynamical Aspect of Iso-(?)_0 Rule of Zdanovskii or Turkdogan Type
Wang Zhichang(Shanghai Institute of Nuclear Research; Academia Sinica)
引用本文:

王之昌. 偏克分子数量■_0恒定条件下多元系的热力学——Здановский型和Turkdogan型等(?)_0规则的热力学意义[J]. 金属学报, 1981, 17(2): 168-176.
. THERMODYNAMICS OF MULTICOMPONENT SYSTEMS WITH CONSTANT PARTIAL MOLAR QUANTITY■_0——Thermodynamical Aspect of Iso-(?)_0 Rule of Zdanovskii or Turkdogan Type[J]. Acta Metall Sin, 1981, 17(2): 168-176.

全文: PDF(541 KB)  
摘要: 本文推导了n元系(n≥3)的一个热力学方程.当n元系在区间(ψ_0~o,ψ_0)内遵循型或Turkdogan型等(?)_0规则时,这个方程有特解。因而,这两类型非理想n元系的性质可仅由二元数据计算而得。 例如,当ψ是体积、热容或焓时,(?)_o相等的(n-1)种二元系之间混合成遵循型等(?)_0规则的n元系时,△ψ=0;(n-1)种二元系之间混合成遵循Turkdogan型等(?)_0规则的n元系时,△ψ=(?)K_(ψj)V_j (2≤j≤n-1)。 又如,当ψ是Gibbs自由能时,遵循型等μ_0规则的n元系中,各组分K的活度都可以表示为Raoult型方程: αk/αk(0)=X_k (1≤K≤n-1)遵循Turkdogan型等μ_0规则的n元系中,组分1和各组分j的活度可以分别表示为Raoult型方程: α_1/α_1(0)=X_1和Henry型方程: α_j=K_j~*X_j
Abstract:A thermodynamical equation of n-component (n≥3) systems with constant partial molar quantity (?)_0 was derived for interval between (?)_0~o and (?)_0, i. e.where and For such systems that obey Zdanovskii-type rule, (sum from n=k (x_k/x_(k(0))))_((?)_0)=1[1≤k≤(n-1)], one of the simple solutions of the equation may be:For certain systems that obey Turkdogan-type rule, (x_1/x_(1(0))+sum from n=j (x_j/K_jx_(j(0))))_((?)_0)=1 the solution may be:For example, if ψ represents volume, heat capacity or enthalpy: Δψ=0 when (n—1) binary systems of the same (?)_0 value were mixed up to compose a n-component system obeying Zdanovskii-type iso-(?)_0 rule; and Δψ=sum from n=j (K_(ψj)Y_j) when (n—1) binary systems of the 0 component were mixed up to compose a ncomponent system obeying Turkdogan-type iso-(?)_0 rule.If ψ represents Gibbs free energy: the activities of the k component in a n-component system obeying Zdanovskii-type iso-μ_0 rule may be written as Raoulttype equation: α_k/α_(k(o))=X_k; and the activities of component 1 and each component j in the n-component system obeying Turkdogan-type iso-μ_0 rule may be written as Raoult-and Henry-type equations, α_1/α_(1(0))=X_1 and α_j=K_j~*X_j respectively.Satisfactory verifications of the aforementioned results have been made for aqueous solutions, liquid alloys or molten salts.
收稿日期: 1981-02-18     
[1] 周国冶,中国科学,1977,№ 5,456.
[2] 王之昌,金属学报,16(1980) ,195.
[3] Gokcen, N. A., J. Phys. Chem., 64 (1960) , 401.
[4] #12
[5] Robinson, R. A. and Stokes, R. H., J. Phys. Chem., 66 (1962) , 506.
[6] Pelton, A. D, and Flengas, S. N., J. Electrochem, Soc., 118 (1971) , 1307.
[7] #12
[8] 周国治,中国科学,1978,№ 3,312.
[9] Shaffer, J. H., Grimes, W. R. and Watson, G. M., J. Phys. Chem., 63 (1959) , 1999.
[10] #12
[11] Robinson, R. A. and Bower, V. E., J. Res. NBS, 69A (1965) , 19.
[12] #12\
No related articles found!