Please wait a minute...
金属学报  1978, Vol. 14 Issue (2): 118-126    
  论文 本期目录 | 过刊浏览 |
用位错理论方法计算应力强度因子
龙期威
中国科学院金属研究所
STRESS-INTENSITY FACTORS CALCULATED BY DISLOCATION THEORY
Long Qi-wei (Lung Chi-wei) (Institute of Metal Research; Academia Sinica)
引用本文:

龙期威. 用位错理论方法计算应力强度因子[J]. 金属学报, 1978, 14(2): 118-126.
. STRESS-INTENSITY FACTORS CALCULATED BY DISLOCATION THEORY[J]. Acta Metall Sin, 1978, 14(2): 118-126.

全文: PDF(476 KB)  
摘要: 本文用位错理论方法计算应力强度因子。利用Чебышев多项式解积分方程,很容易得到位错密度分布函数■(x)的解。用此法对某些实例的应力强度因子进行了计算,并将结果和断裂力学其它方法作了比较。
Abstract:Based upon dislocation theory the stress intensity factors can be calculated. The dislocation density distribution function (?) (x) is easily obtained by solving the integral equation with the Chebyshev polynomials. Some stress intensity factors thus calculated for practical cases have been found to agree fairly well with the results obtained by the conventional fracture mechanics.
收稿日期: 1978-02-18     
[1] Bilby, B. A. and Eshelby, J. D., in "Fracture", Vol. Ⅰ, edited by H. Liebowitze, Academic Press, New York, 1968, pp. 100-178.
[2] Eshelby, J. D., in "Solid State Physics", edited by F. Seitz and D. Turnbull, Vol. Ⅲ, Academic Press, New York, 1956, p. 79.
[3] Sih, G. C., Handbook of Stress Intensity Factors, (1) 1. 1-24; (2) 1. 3-1, Inst. of Fracture and Solid Mech., Lehigh Univ., Pennsylvania, 1973.
[4] 雷日克,和格拉德什坦,函数表与积分表,高等教育出版社,1959,p.283.
[5] Irving, J. and Mullineux, N., Mathematics in Physics and Engineering, Academic, New York, 1959, p. 633.
[6] 龙期威,待发表工作.
[7] 末发表资料(1977年).
[8] Hirth, J. P. and Lothe, J., Theory of Dislocations, McGraw-Hill, New York, 1968, p. 694.
[9] 梁昆淼,数学物理方法,人民教育出版社,1960,p.132.
No related articles found!