Please wait a minute...
金属学报  1977, Vol. 13 Issue (4): 246-262    
  论文 本期目录 | 过刊浏览 |
高应变区中裂纹分析
蔡其巩
北京钢铁研究院
Acta Metallurgica Sinica<1977.04>
引用本文:

蔡其巩. 高应变区中裂纹分析[J]. 金属学报, 1977, 13(4): 246-262.
. [J]. Acta Metall Sin, 1977, 13(4): 246-262.

全文: PDF(1284 KB)  
摘要: 由力学方程及其解答的因次分析方法导出了不可压缩纯幂乘硬化材料的J积分和COD与标称应变(或标称形变功密度)及裂纹长度之间的简单函数表达式,并应用有限元计算结果的外推讨论了全塑性区中裂纹J积分关系J=2πα
收稿日期: 1977-04-18     
基金资助:σdε的有效性。给出了含深表面裂纹宽板弹塑性条件下COD和标称应变之间的近似关系,指出由于存在局部韧带屈服,Burdekin关系;δ/(2παεγ)=ε/(εγ)-0.25在这种含有深表面裂纹的全塑性宽板情况下并不适用。
[1] 蔡其巩,金属学报,12 (1976) ,45.
[2] Egan, G. R., Second International Conference on Pressure Vessel Technology. Pt. Ⅱ, (1973) , 1037.
[3] Hill,R.,塑性数学理论,王仁译,科学出版社,(1966) ,p.52.
[4] 同上,p.43.
[5] Goldman, N. L. and Hutchinson, J. W., Int. J. Solids Struct., 11 (1975) , 575.
[6] Shih, C. F. and Hutchinson, J. W., Trans. ASME, Ser. H., J. Eng. Mater. Technol., 98 (1976) , 289.
[7] Proposed Acceptance Standards for Flaws with Respect to Failure by Brittle Fracture. International Institute of Welding, Commission X-Working Group on Significance of Defects, (1974) .
[8] Burdekin, F. M. and Dawes, M. G., Conference on Practioal Applications of Fracture Mechanics to Pressure-Vessel Technology, (1971) , Inst. Mech. Eng., London, 28.
[9] Sumpter, J. D. G. and Turner, C. E., Second International Conference on Pressure Vessel Technology, Pt. Ⅱ (1973) , 1095.g
No related articles found!