Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 544-552    DOI: 10.3724/SP.J.1037.2012.00690
  论文 本期目录 | 过刊浏览 |
模式螺旋磁场驱动金属液流动的研究
王松伟1,2),王晓东2),倪明玖3),张新德1,2),王增辉3),那贤昭1)
1) 钢铁研究总院先进钢铁流程及材料国家重点实验室, 北京 100081\par
2) 中国科学院大学材料科学与光电技术学院, 北京 100049\par
3) 中国科学院大学物理学院, 北京 100049
LIQUID METAL FLOW DRIVEN BY A MODULATED HELICAL MAGNETIC FIELD
WANG Songwei1,2), WANG Xiaodong2), NI Mingjiu3), ZHANG Xinde1,2), WANG Zenghui3),NA Xianzhao1)
1) State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing100081
2) College of Materials Science and Opto-electronic Technology, University of Chinese Academy Sciences, Beijing 100049
3) School of Physics, University of Chinese Academy Sciences, Beijing 100049
引用本文:

王松伟,王晓东,倪明玖,张新德,王增辉,那贤昭. 模式螺旋磁场驱动金属液流动的研究[J]. 金属学报, 2013, 49(5): 544-552.
WANG Songwei, WANG Xiaodong, NI Mingjiu, ZHANG Xinde, WANG Zenghui, NA Xianzhao. LIQUID METAL FLOW DRIVEN BY A MODULATED HELICAL MAGNETIC FIELD[J]. Acta Metall Sin, 2013, 49(5): 544-552.

全文: PDF(5831 KB)  
摘要: 

研究了永磁体螺旋磁场作旋转运动, 驱动金属液所产生的三维流动行为. 采用超声波Doppler测速仪, 对金属液的流速进行了定量测量分析. 通过周期性改变螺旋磁场的旋转方向, 完全实现了频域模式变化的螺旋磁场. 研究了不同模式参数下, 金属液在圆柱形容器内周向和轴向流动速度的变化情况. 结果表明: 本实验条件下金属液的周向流动, 随着磁场的周期性换向也出现周期性的往返流动, 周向流速的幅值在模式周期Tm大于40 s后达饱和. 轴向流动是螺旋磁场的移动分量引发的轴向环流和旋转分量驱动的二次流共同作用的结果. 模式磁场作用下轴向流动存在最佳模式周期Tm*. 当模式周期小于Tm*时, 轴向流动出现了周期性的往返流; 大于Tm*时, 二次流开始形成并逐渐成为主要的流动形态.

关键词 金属液永磁体螺旋磁场速度场螺旋流    
Abstract

Magnetic fields and electromagnetic forces have long been used to control the flow of a solidifying melt. In this study, low-frequency modulated electromagnetic stirring was provided by a helical permanent magnet stirrer, which can be considered as superposition of traveling and rotating magnetic fields. Flow behaviors of liquid metal driven by this helical magnetic field was investigated. Moreover, the rotating direction of the helical magnetic field was periodically reversed to form a modulated helical magnetic field. The helical magnetic field was constructed on some units of the permanent magnets magnetized in their radius directions. The liquid metal was driven by the Lorentz force via this rotating magnetic stirrer. The azimuthal and axial velocity distribution of liquid GaInSn alloy was quantitatively measured using an ultrasonic Doppler velocimetry (UDV), which revealed the time-dependent flow structure and flow pattern varying with the modulation parameters: the rotating speed of the magnetic stirrer and the modulation frequency. The main results of the velocity measurement of the liquid metal were as followed: the  azimuthal velocity of the screw flow was periodically reversed with the same modulated frequency, and the flow intensity gradually saturated when the modulation period Tm40 s; The axial flow resulted from the competition of large vertical vortex driven by the traveling component of the helical magnetic field and the secondary flow driven by the rotating component of the helical magnetic field. There was a critical modulated period Tm* with respect to the reversed characteristic and flow intensity. When Tm<Tm*, the axial velocity exhibited typically reversed flow, when Tm > Tm*, the secondary flow appeared and gradually dominated in the axial flow pattern. The prospective goals of the present study is to develop proper magnetic fields, which can generate a three-dimensional modulated metal flow in front of solidifying front to adapt the varying casting slabs. The role of electromagnetically driven flow is to transport the solute rejected by the solidifying interface at significant distances in the melt, and to periodically reverse its circulation so that macrosegregation is minimized.

Key wordsliquid metal    permanent magnet    helical magnetic field    velocity distribution    screw flow
收稿日期: 2012-11-19     
基金资助:

中国科学院“百人计划”项目111800M105, 国际科技合作计划项目2010DFA71660和国家自然科学基金项目11125212资助

作者简介: 王松伟, 男, 1988年生, 硕士生

[1] Griffiths W D, McCartney D G.  Mater Sci Eng, 1997; A222: 140


[2] Vives C.J Cryst Growth, 1997; 173: 541

[3] Medina M, Du Terrail Y, Durand F, Fautrelle Y.  Metall Mater Trans, 2004; 4B: 743

[4] Noeppel A, Ciobanas A, Wang X D, Zaidat K, Mangelinck N, Budenkova O, Weiss A, Zimmermann G, Fautrelle Y. Metall Mater Trans, 2010; 41B: 193

[5] Cramer A, Pal J, Gerbeth G.  Phys Fluids, 2007; 19: 118109

[6] Zhao Q, Fang C F, Hou X G, Han Y B, Zhang N, Zhang X G.  Spec Cast Nonferrous Alloys, 2011; 31: 495

(赵倩, 房灿峰, 侯晓光, 韩彦博, 张楠, 张兴国. 特种铸造及有色合金, 2011; 31: 495)

[7] Xing W B, Xu C X, Fang C G, Mao B, Wang S Y.  J Univ Sci Technol Beijing, 1991; 13: 110

(邢文彬, 许诚信, 房彩刚, 毛斌, 王世郁. 北京科技大学学报, 1991; 13: 110)

[8] Wang X D, Li T J, Fautrelle Y, Dupouy M D, Jin J Z.  J Cryst Growth, 2005; 275: 1473

[9] Vives C N.  Magnetohydrodynamic, 1996; 32: 201

[10] Wang X D, Ciobanas A, Baltaretu F, Bianchi A M, Fautrelle Y.  Mater Sci Forum, 2006; 508: 163

[11] Wang X D, Fautrelle Y, Etay J, Moreau R.  Metall Mater Trans, 2009; 40B: 82

[12] Wang X D, Moreau R, Etay J, Fautrelle Y.  Metall Mater Trans, 2009; 40B: 104

[13] Yang Y S, Ma X P, Li Y J.  Mater Sci Forum, 2010; 654--656: 428

[14] Ma X P, Li Y J, Yang Y S.  J Mater Res, 2009; 24: 3174

[15] Wang B, Yang Y S, Ma X P, Tong W H.  Trans Nonferrous Met Soc Chin, 2010; 20: 283

[16] Hua J S, Zhang Y J, Wang E G, He J C.  J Northeastern Univ (Nat Sci), 2011; 32: 72

(华骏山, 张永杰, 王恩刚, 赫冀成. 东北大学学报 (自然科学版), 2011; 32: 72)

[17] Hua J S, Zhang Y J, Wang E G, He J C.  J Northeastern Univ (Nat Sci), 2011; 32: 258

(华骏山, 张永杰, 王恩刚, 赫冀成. 东北大学学报 (自然科学版), 2011; 32: 258)

[18] Eckert S, Nikrityuk P A, Rabiger D, Eckert K, Gerbeth G.  Metall Mater Trans, 2008; 39B: 374

[19] Nikrityuk P A, Ungarish M, Eckert K, Grundmann R.  Phys Fluids, 2005; 17: 067101

[20] Rabiger D, Eckert S, Gerbeth G.  Exp Fluids, 2010; 48: 233

[21] Zhang Q, Jin J Z, Wang T M, Li T Q, Guo Q T.  Chin J Nonferrous Met, 2007; 17: 98

(张琦, 金俊泽, 王同敏, 李廷举, 郭庆涛. 中国有色金属学报, 2007; 17: 98)

[22] Willers B, Eckert S, Nikrityuk P A, Rabiger D, Dong J, Eckert K, Gerbeth G.  Metall Mater Trans, 2008; 39B: 304

[23] Wang X D, Na X Z, Wang S W.  Chin Pat, 201210473725.3, 2012

(王晓东, 那贤昭, 王松伟. 中国专利, 201210473725.3, 2012)

[24] Morley N B, Burris J, Cadwallader L C, Nornberg M D.  Rev Sci Instrum, 2008; 79: 056107

[25] Cramer A, Zhang C, Eckert S.  Flow Meas Instrum, 2004; 15: 145

[26] Feng R.  Ultrasonics Handbook Version 1.0. Nanjing: Nanjing University, 1999: 122

(冯若. 超声手册第一版. 南京: 南京大学出版社, 1999: 122)

[27] Jia G L, Pang W C.  Electromagnetic Processing of Materials.

Shenyang: Northeastern University Press, 2003: 150

(贾光霖, 庞维成. 电磁冶金原理与工艺. 沈阳: 东北大学出版社, 2003: 150)
[1] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
[2] 于湛 张振强 任忠鸣 雷作胜 邓康. 板坯电磁制动结晶器内流体流动的研究[J]. 金属学报, 2010, 46(10): 1275-1280.
[3] 冯维存; 李卫; 朱明刚; 韩广兵; 高汝伟 . 3种相分布模型中纳米复合永磁体矫顽力与晶粒尺寸的关系[J]. 金属学报, 2008, 44(1): 8-12 .
[4] 成问好; 李卫; 李传健 . 添加Nb对Nd-Fe-B磁体温度稳定性的影响[J]. 金属学报, 2001, 37(1): 87-90 .
[5] 曾大文; 谢长生 . 激光熔覆溶池二维准稳态流场及温度场的数值模拟[J]. 金属学报, 1999, 35(6): 604-610 .
[6] 周寿增;于申军;张茂才;王润;林国标;尹有祥;林毅. 气-固相反应法制备Sm_2Fe_(17)N_y永磁合金过程中氮原子的扩散[J]. 金属学报, 1996, 32(8): 877-883.
[7] 杨继廉;张百生;丁永凡;杨应昌;张晓东;潘树明. R_2Fe_(17)N_x中子衍射研究(R=Y,Dy,Nd)[J]. 金属学报, 1993, 29(3): 84-87.
[8] 何军舫;徐孝荣;姚国兰;赵航;赵凤鸣;金福成. 快淬SmFeN及其粘结磁体研究[J]. 金属学报, 1993, 29(1): 93-96.
[9] 贺友多;Y.SAHAI. CVD反应器传输过程的三维数学模型[J]. 金属学报, 1989, 25(2): 89-94.
[10] 王瑞坤;孙丽虹;李东培;应启明;竹山太郎. (NdPr)_(16)Fe_(76)B_8永磁体的磁畴结构和有关的磁性能[J]. 金属学报, 1988, 24(5): 425-430.