Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 277-282    DOI: 10.3724/SP.J.1037.2011.00504
  论文 本期目录 | 过刊浏览 |
(Ti, Al)N涂层应力沿层深分布的调整及大厚度涂层的制备
赵升升1), 程毓1), 常正凯2), 王铁钢2), 孙超2)
1) 深圳职业技术学院, 深圳 518055
2) 中国科学院金属研究所, 沈阳 110016
MODIFICATION OF STRESS DISTRIBUTION ALONG THE THICKNESS OF (Ti, Al)N COATINGS AND PREPARATION OF THE COATINGS WITH LARGE THICKNESS
ZHAO Shengsheng1), CHENG Yu1), CHANG Zhengkai2), WANG Tiegang2), SUN Chao2)
1) Shenzhen Polytechnic, Shenzhen 518055
2) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

赵升升 程毓 常正凯 王铁钢 孙超. (Ti, Al)N涂层应力沿层深分布的调整及大厚度涂层的制备[J]. 金属学报, 2012, 48(3): 277-282.
, , , , . MODIFICATION OF STRESS DISTRIBUTION ALONG THE THICKNESS OF (Ti, Al)N COATINGS AND PREPARATION OF THE COATINGS WITH LARGE THICKNESS[J]. Acta Metall Sin, 2012, 48(3): 277-282.

全文: PDF(2456 KB)  
摘要: 利用电弧离子镀技术在不锈钢基体上制备了(Ti, Al)N涂层, 研究了N2分压改变对涂层残余应力沿层深分布及相关
力学性能的影响. 结果表明, 低N2分压下, (Ti, Al)N涂层残余应力沿层深分布较均匀, 随N2分压的增加, 涂层应力沿层深呈
“钟罩型”分布, 且全膜厚的应力值也明显增大; 通过对涂层生长结构及微观成分分析, 初步探讨了应力分布机理. 随N2分压的增
加, 涂层硬度会显著增加, 而膜/基结合力则大幅下降; 采用改变N2分压工艺制备(Ti, Al)N涂层, 可有效调整涂层残余应力沿
层深分布趋势, 改善其力学性能, 并可成功制备厚度在130 μm以上的硬质涂层.
关键词 (Ti, Al)N硬质涂层应力分布调整应力N2分压    
Abstract:The effects of N2 partial pressure on the depth distribution
of residual stresses and mechanical properties in the (Ti, Al)N coatings
prepared by arc ion plating (AIP), were investigated. The results indicate
that the stress distribution was roughly uniform when the coatings were
deposited under lower NN2 partial pressure. As the partial pressure
increased the stress distribution to exhibited a “bell” shape and the
average stresses of coatings increased remarkably. The mechanism of
stress distribution was analyzed by characterizing the microstructure and
the composition of the coating. The N2 partial pressure also affected the
hardness of coatings and the coating/substrate adhesion obviously. The
higher the N2 partial pressure is, the higher the coating hardness but
the lower the adhesion. The stress distribution can be modified and the
adhesion of the coating/substrate can be improved by optimizing N2 partial
pressure parameter. Finally, the coatings with the thickness over 130 μm
were successfully directly deposited on the substrate through optimizing
the N2 partial pressure.
Key words(Ti, Al)N    hard coating    stress distribution    stress modification    N2 partial pressure
收稿日期: 2011-08-08     
ZTFLH: 

TG174.444

 
基金资助:

国家自然科学基金项目50471072和广东省自然科学基金项目S2011040004468资助

作者简介: 赵升升, 男, 满族, 1979年生, 讲师, 博士
[1] Palmers J, Van Stappen M. Surf Coat Technol, 1995; 76/77: 363

[2] Shew B Y, Huang J L. Surf Coat Technol, 1995; 71: 30

[3] Cheng Y H, Tay B K, Lau S P, Shi X, Chua H C. Thin Solid Films, 2000; 379: 76

[4] Zhao S S, Yang Y, Li J B, Gong J, Sun C. Surf Coat Technol, 2008; 202: 5185

[5] Huang J H, Ma C H, Chen H. Surf Coat Technol, 2006; 201: 3199

[6] Sun X L, Fan Z X, Shao J D. Acta Metall Sin, 2007; 43: 307

(孙喜莲, 范正修, 邵建达. 金属学报, 2007; 43: 307)

[7] Song G H, Zheng J D, Liu Y, Sun C. J Synth Crys, 2004; 33: 422

[8] Stein C, Keunecke, M, Bewilogua K, Chudoba T, Koelker W, van den Berg H. Surf Coat Technol, 2011; 205(spec): 2

[9] Wu P, Zhou C Z, Tang X N. Acta Metall Sin, 1994; 30: 508

(吴萍, 周昌炽, 唐西南. 金属学报, 1994; 30: 508)

[10] PalDey S, Deevi S C. Mater Sci Eng, 2003; A361: 1

[11] Manaila R, Devenyi A, Biro D, David L, Barna P B, Kovacs A. Surf Coat Technol, 2002; 151: 21

[12] Li M S, Wang F H. Surf Coat Technol, 2003; 167: 197

[13] Sanchette F, Czerwiec T. Surf Coat Technol, 1997; 96: 184

[14] Paul H M, Christian M, Lars H, Helmut C. Prog Mater Sci, 2006; 51: 1032

[15] Zhao S S, Du H, Hua W G, Gong J, Li J B, Sun C. J Mater Res, 2007; 22: 2659

[16] Yang H G, Li S, Zhang R L. China Surf Eng, 2009; 22(2): 20

(杨洪刚, 李曙, 张荣禄.中国表面工程, 2009; 22(2): 20)

[17] Wang T G, Zhao S S, Hua W G, Li J B, Gong J, Sun C. Mater Sci Eng, 2010; A527: 454

[18] Zhou Y, Rao G B, Wang J Q, Zhang B, Yu Z M, Ke W, Han E H. Thin Solid Films, 2011; 519: 2207

[19] Wan X S, Zhao S S, Yang Y, Gong J, Sun C. Surf Coat Technol, 2010; 204: 1800

[20] Yang Y, Zhao S S, Gong J, Jiang X, Sun C. J Mater Sci Technol, 2011; 27: 385

[21] Josson B, Hogmark S. Thin Solid Films, 1984; 114: 257

[22] Zheng J D, Zou Y S, Song G H, Gong J, Liu Y, Sun C, Wen L S. Acta Metall Sin, 2004; 40: 745

(郑静地, 邹友生, 宋贵宏, 宫骏, 刘 越, 孙超, 闻立时. 金属学报, 2004; 40: 745)

[23] Thornton J A. Ann Rev Mater Sci, 1977; 7: 239

[24] Tian M B, Liu D L. Film Science and Technology Handbook (1st Vol.). Beijing: China Machine Press, 1980: 7

(田民波, 刘德令. 薄膜科学与技术手册 (上). 北京: 机械工业出版社, 1980: 7)

[25] Carvalho N J M, Zoestbergen E, Kooi B J, Hosson D J T M. Thin Solid Films, 2003; 429: 179
[1] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[2] 梁迎春 盆洪民 白清顺. 单晶Cu材料纳米切削特性的分子动力学模拟[J]. 金属学报, 2009, 45(10): 1205-1210.
[3] 李启楷; 张跃; 郭献忠; 褚武扬 . Cu3Au中脱合金层产生内应力的分子动力学模拟[J]. 金属学报, 2003, 39(1): 51-54 .
[4] 曹利;蒋持平;姚忠凯;雷廷权. 碳化硅晶须增强铝复合材料的断裂研究[J]. 金属学报, 1989, 25(3): 113-118.