Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1391-1421    DOI: 10.3724/SP.J.1037.2010.00381
  综述 本期目录 | 过刊浏览 |
块状非晶合金及其复合材料研究进展
胡壮麒, 张海峰
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
RECENT PROGRESS IN THE AREA OF BULK AMORPHOUS ALLOYS AND COMPOSITES
HU Zhuangqi, ZHANG Haifeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

胡壮麒 张海峰. 块状非晶合金及其复合材料研究进展[J]. 金属学报, 2010, 46(11): 1391-1421.
. RECENT PROGRESS IN THE AREA OF BULK AMORPHOUS ALLOYS AND COMPOSITES[J]. Acta Metall Sin, 2010, 46(11): 1391-1421.

全文: PDF(3716 KB)  
摘要: 本文结合本研究组近几年的部分研究结果, 围绕制备-结构-性能之间的相互关系和内在机制, 通过调控合金熔体加热和凝固过程以及复合材料界面结构的设计, 制备出几种结构可控和性能优异的非晶合金及非晶复合材料. 其中(Ti, Zr)基非晶块体材料尺寸在50 mm以上, 非晶复合材料特别是结构可控的晶态/非晶态双连续相复合材料具有良好的力学性能. 研究工作涉及锆基、镁基、镍基和钛基等主要合金体系及其复合材料, 在综合分析和论述的基础上, 力图清晰地认识和理解制备--结构--性能之间的内在关系. 非晶合金的大量应用一直是待攻克的重要目标, 期望颇具特色的非晶复合材料能得到实际应用.
关键词 块状非晶合金非晶基复合材料凝固控制    
Abstract:Bulk metallic glass (BMG) and its composite (BMGC) are new members in the area of materials science and engineering. In this paper, we simply reviewed the development history, especially introduced our recent progress referred to Ti-, Ni-, Zr- and Mg-based BMGs and BMGCs. The study of the microstructures of BMGs prepared by controlling the solidification conditions indicates that the microstructure of BMG is flexible. Several factors including the casting temperature, the mold temperature and the mold material etc. influencing on the glass formation, microstructures and properties were studied. The relationship among processes, structures and properties of BMGs is furthermore illustrated. Some BMGs and BMGCs were prepared by mediating the solidification conditions and designing the novel composite structures, of which the size of Ti-based BMG reaches 50 mm,\linebreak and crystal/BMG bi-continuous phase composites exhibit good properties. Investigations reveal that the application of these BMG and BMGCs will be expected in the near future.
Key wordsbulk metallic glass    bulk metallic glass matrix composite    solidification controlling
收稿日期: 2010-07-29     
基金资助:

国家重点基础研究发展计划项目2006CB605201及国家杰出青年基金项目50825402和国家自然科学基金50731005资助

作者简介: 胡壮麒, 男, 1929年生, 研究员, 中国工程院院士
[1] Chen H. Rep Prog Phys, 1980; 43: 353 [2] Kelton K F. Solid State Phys, 1991; 45: 75 [3] Johnson W L. MRS Bull, 1999; 24: 42 [4] Inoue A. Acta Mater, 2000; 48: 279 [5] Wang W H, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45 [6] Eckert J, Das J, Pauly S, Duhamel C. J Mater Res, 2007; 22: 285 [7] Wang W. Adv Mater, 2009; 21: 4524 [8] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067 [9] Wang W H. Prog Mater Sci, 2007; 52: 540 [10] Yavari A R, Lewandowski J J, Eckert J. MRS Bull, 2007; 32: 635 [11] Brothers A H, Dunand D C. MRS Bull, 2008; 32: 639 [12] Busch R, Schroers J, Wang W H. MRS Bull, 2008; 32: 620 [13] Chen M. Annu Rev Mater Res, 2008; 38: 445 [14] Inoue A, Nishiyama N. MRS Bull, 2008; 32: 651 [15] Johnson W L, Demetriou M D, Harmon J S, Lind M L, Samwer K. MRS Bull, 2008; 32: 644 [16] Miracle D B, Egami T, Flores K M, Kelton K F. MRS Bull, 2008; 32: 629 [17] Schroers J. Adv Mater, 2010; 22: 1566 [18] Chu J, Huang J, Jang J, Wang Y, Liaw P. JOM, 2010; 62: 19 [19] Demetriou M, Wiest A, Hofmann D, Johnson W, Han B, Wolfson N, Wang G, Liaw P. JOM, 2010; 62: 83 [20] Egami T. JOM, 2010; 62: 70 [21] Stoica M, Das J, Bednarˇcik J, Wang G, Vaughan G, Wang W, Eckert J. JOM, 2010; 62: 76 [22] Wang G, Liaw P. JOM, 2010; 62: 25 [23] Xu J, Ramamurty U, Ma E. JOM, 2010; 62: 10 [24] Yang Y, Ye J, Lu J, Gao Y, Liaw P. JOM, 2010; 62: 93 [25] Schroers J, Kumar G, Hodges T, Chan S, Kyriakides T. JOM, 2009; 61: 21 [26] Chaudhari P, Turnbull D. Science, 1978; 199: 11 [27] Inoue A, Nishiyama N. Mater Trans JIM, 1997; 38: 464 [28] Takenaka K, Wada T, Nishiyama N, Kimura H, Inoue A. Mater Trans, 2005; 46: 1720 [29] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342 [30] Inoue A, Zhang T. Mater Trans JIM, 1996; 37: 185 [31] Zhang Q, Zhang W, Inoue A. Scr Mater, 2009; 61: 241 [32] Inoue A, Zhang Q S, Zhang W, Yubuta K, Son K S, Wang X M. Mater Trans, 2009; 50: 388 [33] Deng S T, Zhang H F, Wang A M, Li H, Ding B Z, Hu Z Q. J Alloys Compd, 2008; 460: 182 [34] Guo F, Poon S, Shiflet G. Appl Phys Lett, 2003; 83: 2575 [35] Li R, Pang S, Ma C, Zhang T. Acta Mater, 2007; 55: 3719 [36] Jiang Q, Zhang G, Yang L, Wang X, Saksl K, Franz H, Wunderlich R, Fecht H, Jiang J. Acta Mater, 2007; 55: 4409 [37] Ma H, Shi L L, Xu J, Li Y, Ma E. Appl Phys Lett, 2005; 87: 181915 [38] Schroers J, Johnson W. Appl Phys Lett, 2004; 84: 3666 [39] Zeng Y Q, Nishiyama N, Yamamoto T, Inoue A. Mater Trans, 2009; 50: 2441 [40] Zhang Q, Zhang W, Inoue A. Mater Trans, 2007; 48: 629 [41] Zhang W, Zhang Q, Inoue A. J Mater Res, 2008; 23: 1452 [42] Zhang W, Zhang Q, Qin C, Inoue A. Mater Sci Eng, 2008; B148: 92 [43] Zhang Q S, Zhang W, Inoue A. Mater Trans, 2007; 48: 3031 [44] Tang M Q, Zhang H F, Zhu Z W, Fu H M, Wang A M, Li H, Hu Z Q. J Mater Sci Technol, 2010; 26: 481 [45] Tang M Q, Zhang H F, Zhu Z W, Fu H M, Wang A M, Li H, Hu Z. Q. Unpublished results [46] Miracle D B. Nat Mater, 2004; 3: 697 [47] Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E. Acta Mater, 2008; 56: 6264 [48] Cheng Y Q, Ma E, Sheng H W. Phys Rev Lett, 2009; 102: 245501 [49] Ma D, Stoica A D, Wang X L. Nat Mater, 2009; 8: 30 [50] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 075502 [51] Inoue A, Zhang W, Tsurui T, Yavari A R, Greer A L. Phil Mag Lett, 2005; 85: 221 [52] Dong W B, Zhang H F, Cai J, Sun W S, Wang A M, Li H, Hu Z Q. J Alloys Compd, 2006; 425: L1 [53] Das J, Tang M B, Kim K B, Theissmann R, Baier F,Wang W H, Eckert J. Phys Rev Lett, 2005; 94: 205501 [54] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H. Science, 2007; 315: 1385 [55] Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 065504 [56] Shen B, Chang C, Inoue A. Appl Phys Lett, 2006; 88: 201903 [57] Inoue A, Shen B, Koshiba H, Kato H, Yavari A. Acta Mater, 2004; 52: 1631 [58] Guo H, Yan P, Wang Y, Tan J, Zhang Z, Sui M, Ma E. Nat Mater, 2007; 6: 735 [59] Jang D, Greer J R. Nat Mater, 2010; 9: 215 [60] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. Adv Eng Mater, 2010; 12: 170 [61] Zhu Z W, Zhang H F, Wang H, Ding B Z, Hu Z Q, Huang H. J Mater Res, 2009; 24: 3108 [62] Schroers J, Nguyen T, Croopnick G A. Scr Mater, 2007; 56: 177 [63] Schroers J, Pham Q, Desai A, Technol L, Forest L. J Microelectromech Syst, 2007; 16: 240 [64] Turnbull D, Cohen M H. J Chem Phys, 1958; 29: 1049 [65] Cohen M H, Turnbull D. J Chem Phys, 1959; 31: 1164 [66] Turnbull D. Contemp Phys, 1969; 10: 473 [67] Cohen M, Turnbull D. Nature, 1961; 189: 131 [68] Greer A. Nature, 1993; 366: 303 [69] Lu Z P, Liu C T. Acta Mater, 2002; 50: 3501 [70] Li Y, Guo Q, Kalb J A, Thompson C V. Science, 2008; 322: 1816 [71] Li Y. JOM, 2005; 57: 60 [72] Wang W H. J Appl Phys, 2006; 99: 093506 [73] Liu W Y, Zhang H F, Wang A M, Li H, Hu Z Q. Mater Sci Eng, 2007; A459: 196 [74] Wang Y, Qiang J, Wong C, Shek C, Dong C. J Mater Res, 2003; 18: 642 [75] Dong C, Wang Q, Qiang J B, Wang Y M, Han G, Wu J, Li Y H, Cheng X, Zhu C L, Chen H. J Phys Conf Ser, 2008; 98: 012015 [76] Ostwald W Z. Phys Chem, 1897; 22: 289 [77] Tanaka H. J Chem Phys, 1999; 111: 3163 [78] Tanaka H. J Chem Phys, 1999; 111: 3175 [79] Wang H R, Ye Y F, Min W H, Teng X Y, Qin J Y. Acta Phys–Chim Sin, 2001; 37: 801 (王焕荣, 叶以富, 闵文辉, 滕新营, 秦敬玉. 物理化学学报, 2001; 37: 801) [80] Bian X F,Wang WM, Li H, Ma J J. Metal Melt Structure. Shanghai: Shanghai Jiao Tong University Press, 2003: 59 (边秀房, 王伟民, 李辉, 马家骥. 金属熔体结构. 上海: 上海交通大学出版社, 2003: 59) [81] Qin J Y, Qin X B, Min W W, Bian X F T. Nonferr Metal Soc, 2004; 14: 1068 [82] Bian X, Guo J, Lv X, Qin X, Wang C. Appl Phys Lett, 2007; 91: 221910 [83] Popel P S, Chikova O A, Matveev V M. High Temp Mater Processes, 1995; 14: 219 [84] Saboungi M L, Blomquist R, Volin K J, Price D L. J Chem Phys, 1987; 87: 2278 [85] Simonet V, Hippert F, Audier M, Bellissent R. Phys Rev, 2001; 65B: 024203 [86] Schenk T, Simonet V, Holland–Moritz D, Bellissent R. Europhys Lett, 2004; 65: 34 [87] Li H. J Phys Chem, 2004; 108B: 5438 [88] Tanaka H. J Phys Condens Matter, 2003; 15: L491 [89] Mukherjee S, Schroers J, Johnson W L, Rhim W K. Phys Rev Lett, 2005; 94: 245501 [90] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F. Phys Rev Lett, 2009; 102: 057801 [91] Xing L, Ochin P. J Mater Sci Lett, 1997; 16: 1277 [92] Popel P S, Calvo–Dahlborg M, Dahlborg U. J Non–Cryst Solids, 2007; 353: 3243 [93] Kui H, Greer A, Turnbull D. Appl Phys Lett, 1984; 45: 615 [94] Tamura T, Amiya K, Rachmat R S, Mizutani Y, Miwa K. Nat Mater, 2005; 4: 289 [95] Tamura T, Kamikihara D, Miwa K. Int J Cast Met Res, 2008; 1: 86 [96] Matsubara E, Tamura T, Waseda Y, Zhang T, Inoue A, Masumoto T. J Non–Cryst Solids, 1992; 150: 380 [97] Matsubara E, Tamura T, Waseda Y, Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1992; 33: 873 [98] Busch R, Bakke E, Johnson W L. Acta Mater, 1998; 46: 4725 [99] Ramachandrarao P. Prog Mater Sci, 1997; 42: 301 [100] Xu Z Y. Principle of Transformation. Beijing: Science Press, 1988: 472 (徐祖耀. 相变原理. 北京: 科学出版社, 1988: 472) [101] Suzuki T, Toyoda S, Umeda T, Kimura Y. J Cryst Growth, 1977; 38: 123 [102] Li D, Herlach D. Phys Rev Lett, 1996; 77: 1801 [103] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823 [104] Herlach D. Mater Sci Eng, 1994; R12: 177 [105] Schroers J, Holland–Moritz D, Herlach D, Urban K. Phys Rev, 2000; 61B: 14500 [106] Nagashio K, Kuribayashi K. Acta Mater, 2002; 50: 1973 [107] Nagashio K, Kuribayashi K. Acta Mater, 2001; 49: 1947 [108] Sun W S, Zhang H F, Hu Z Q, Kulik T. J Non–Cryst Solids, 2005; 351: 1696 [109] Sun W S, Zhang H F, Ding B Z, Hu Z Q. J Mater Res, 2004; 19: 2523 [110] Zhu Z W. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009 (朱正旺. 中国科学院金属研究所博士学位论文, 沈阳, 2009) [111] Zhu Z W, Zhang H F, Pan D G, Sun W S, Hu Z Q. Adv Eng Mater, 2006; 8: 953 [112] Zhu Z W, Zhang H F, Ding B Z, Hu Z Q. Mater Sci Eng, 2008; A492: 221 [113] Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A. Acta Mater, 2005; 53: 3703 [114] Zhu Z W, Zheng S J, Zhang H F, Ding B Z, Hu Z Q, Liaw P K,Wang Y D, Ren Y. J Mater Res, 2008; 23: 941 [115] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278 [116] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. Adv Eng Mater, 2009; 11: 986 [117] Laws K, Gun B, Ferry M. Metall Mater Trans, 2009; 40A: 2377 [118] Tournier R F. Physica, 2007; 392B: 79 [119] Lin X H, Johnson W L, Rhim W K. Mater Trans JIM, 1997; 38: 473 [120] Gebert A, Eckert J, Schultz L. Acta Mater, 1998; 46: 5475 [121] Li H X, Gao J E, Jiao Z B, Wu Y, Lu Z P. Appl Phys Lett, 2009; 95: 161905 [122] Altounian Z, Batalla E, Strom–Olsen J, Walter J. J Appl Phys, 1987; 61: 149 [123] Flemings M. Solidification Processing. New York: McGraw–Hill, 1974: 1 [124] Louzguine–Luzgin D V, Setyawan A D, Kato H, Inoue A. Appl Phys Lett, 2006; 88: 251902 [125] Holman J. Heat Transfer. 7th Ed., New York: McGraw– Hill, 1990: 1 [126] Zhu Z W, Zhang H F,Wang H, Ding B Z, Hu Z Q. J Mater Res, 2008; 23: 2714 [127] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. J Alloys Compd, 2010; 496: 595 [128] Xia M, Zhang S, Li J, Ma C. Appl Phys Lett, 2006; 88: 261913 [129] Kato H, Hirano T, Matsuo A, Kawamura Y, Inoue A. Scr Mater, 2000; 43: 503 [130] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. Mater Sci Eng, 2010; A527: 981 [131] Qiang J B, Zhang W, Xie G Q, Inoue A. Appl Phys Lett, 2007; 90: 231907 [132] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085 [133] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W L. PNAS, 2008; 105: 20136 [134] Fan C, Li C, Inoue A,HaasV. Phys Rev, 2000; 61B: R3761 [135] Hajlaoui K, Yavari A R, LeMoulec A, Botta WJ, Vaughan FG, Das J,Greer AL, KvickA. J Non–Cryst Solids, 2007; 353: 327 [136] Wang L, Ma L, Chen M, Kimura H, Inoue A. Mater Sci Eng, 2002; A325: 182 [137] Murali P, Ramamurty U. Acta Mater, 2005; 53: 1467 [138] Kumar G, Rector D, Conner R D, Schroers J. Acta Mater, 2009; 57: 3572 [139] Makino A, Men H, Yubuta K, Kubota T. J Appl Phys, 2009; 105: 013922 [140] Makino A, Men H, Kubota T, Yubuta K, Inoue A. Mater Trans, 2009; 50: 204 [141] Inoue A. Intermetallics, 2000; 8: 455 [142] Guo F, Wang H J, Poon S J, Shiflet G J. Appl Phys Lett, 2005; 86: 091907 [143] Sun Y F, Wei B C, Wang Y R, Li W H, Cheung T L, Shek C H. Appl Phys Lett, 2005; 87: 051905 [144] Zhu Z W, Zhang H F, Sun W S, Ding B Z, Hu Z Q. Scr Mater, 2006; 54: 1145 [145] Calin M, Eckert J, Schultz L. Scr Mater, 2003; 48: 653 [146] Kuhn U, Eckert J, Mattern N, Schultz L. Appl Phys Lett, 2002; 80: 2478 [147] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020 [148] Bian Z, Kato H, Qin C, Zhang W, Inoue A. Acta Mater, 2005; 53: 2037 [149] Dong W B, Zhang H F, Sun W S, Wang A M, Li H, Hu Z Q. J Mater Res, 2006; 21: 1490 [150] Hofmann D C, Suh J Y, Wiest A, Johnson W. Scr Mater, 2008; 59: 684 [151] Qiao J W, Wang S, Zhang Y, Liaw P K, Chen G L. Appl Phys Lett, 2009; 94: 151905 [152] Zhang Y, Xu W, Tan H, Li Y. Acta Mater, 2005; 53: 2607 [153] Liu J M, Zhang H F, Fu H M, Hu Z Q, Yuan X G. J Mater Res, 2010; 25: 1160 [154] Liu J M, Zhang H F, Fu H M, Hu Z Q, Yuan X G. Mater Trans, 2010; 51: 1033 [155] Wu Y, Xiao Y, Chen G, Liu C, Lu Z. Adv Mater, 2010; 22: 2770 [156] Pauly S, Das J, Duhamel C, Eckert J. Adv Eng Mater, 2007; 9: 487 [157] Fu H M, Wang H, Zhang H F, Hu Z Q. Scr Mater, 2006; 54: 1961 [158] Fu H M, Zhang H F, Wang H, Zhang Q S, Hu Z Q. Scr Mater, 2005; 52: 669 [159] Mattern N, Goerigk G, Vainio U, Miller M K, Gemming T, Eckert J. Acta Mater, 2009; 57: 903 [160] Park B J, Chang H J, Kim D H, Kim W T, Chattopadhyay K, Abinandanan T A, Bhattacharyya S. Phys Rev Lett, 2006; 96: 245503 [161] Du X H, Huang J C, Hsieh K C, Lai Y H, Chen H M, Jang J S C, Liaw P K. Appl Phys Lett, 2007; 91: 131901 [162] Bae D H, Lee M H, Kim D H, Sordelet D J. Appl Phys Lett, 2003; 83: 2312 [163] Choi–Yim H, Johnson W L. Appl Phys Lett, 1997; 71: 3808 [164] Choi–Yim H, Conner R D, Szuecs F, Johnson W L. Acta Mater, 2002; 50: 2737 [165] Xu Y K, Ma H, Xu J, Ma E. Acta Mater, 2005; 53: 1857 [166] Choi–Yim H, Busch R, Koster U, Johnson W L. Acta Mater, 1999; 47: 2455 [167] Qiao D C, Zhang H F, Li H, Ding B Z, Hu Z Q. Acta Metall Sin, 2003; 39: 1076 (乔东春, 张海峰, 李宏, 丁炳哲, 胡壮麒. 金属学报, 2003; 39: 1076) [168] Xu Q G, Zhang H F, Hu Z Q. Trans Nonferr Met Soc, 2005; 15: 45 [169] Ma G C, Li W, Li H, Zhang H F, Hu Z Q. Acta Metall Sin, 2006; 42: 201 (马广才, 李文, 李 宏, 张海峰, 胡壮麒. 金属学报, 2006; 42: 201) [170] Xu Q G, Qiu K Q, Zhang H F, Hu Z Q. Rare Met Mater Eng, 2007; 36: 813 (徐前刚, 邱克强, 张海峰, 胡壮麒. 稀有金属材料与工程, 2007; 36: 813) [171] Xu Q G, Wu B L, Zhang H F, Hu Z Q. Rare Met, 2007; 26: 213 [172] Liu N, Ma G F, Zhang H F, Li H, Ding B Z, Wang A M, Hu Z Q. Mater Lett, 2008; 62: 3195 [173] Ma G F, Zhang H F, Li H, Hu Z Q. J Alloys Compd, 2008; 462: 343 [174] Ma G F, Zhang H L, Zhang H F, Li H, Hu Z Q. J Alloys Compd, 2008; 464: 248 [175] Liu N, Zhang H F, Li H, Hu Z Q. J Alloys Compd, 2010; 494: 347 [176] Liu N. PhD Thesis. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (刘 娜. 中国科学院金属研究所博士学位论文, 沈阳, 2010) [177] Pan D G, Zhang H F, Wang A M, Hu Z Q. Appl Phys Lett, 2006; 89: 261904 [178] Pan D G. PhD Thesis. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007  (潘大刚. 中国科学院金属研究所博士学位论文, 沈阳, 2007) [179] Fu X L, Li Y, Schuh C A. Scr Mater, 2007; 56: 617 [180] Conner R D, Dandliker R B, Johnson W L. Acta Mater, 1998; 46: 6089 [181] Kim C, Busch R, Masuhr A, Choi–Yim H, Johnson W. Appl Phys Lett, 2001; 79: 1456 [182] Conner R D, Dandliker R B, Scruggs V, Johnson W L. Int J Impact Eng, 2000; 24: 435 [183] Qiu K Q, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallics, 2002; 10: 1283 [184] Wu X F, Zhang H F, Hu Z Q. Rare Met Mater Eng, 2005; 34: 863 (武晓峰, 张海峰, 胡壮麒. 稀有金属材料与工程, 2005; 34: 863) [185] Zhang H, Liu L Z, Zhang Z F, Qiu K Q, Pan X F, Zhang H F, Wang Z G. J Mater Res, 2006; 21: 1375 [186] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S. Metall Mater Trans, 2006; 37A: 2459 [187] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S, Hu Z Q. Mater Sci Eng, 2006; A418: 146 [188] Ma W, Kou H, Chen C, Li J, Chang H, Zhou L, Fu H. Mater Sci Eng, 2008; A486: 308 [189] Zhang H, Zhang Z F, Wang Z G, Zhang H F. Mater Sci Eng, 2008; A483: 164 [190] Zhang H F, Li H, Wang A M, Fu H M, Ding B Z, Hu Z Q. Intermetallics, 2009; 17: 1070 [191] Clarke D. J Am Ceram Soc, 2005; 75: 739 [192] Chen Y L, Wang A M, Zhang H F, Hu Z Q. Int J Mod Phys, 2009; 23B: 1294 [193] Xue Y F, Cai H N, Wang L, Wang F C, Zhang H F. Mater Sci Eng, 2007; A445: 275 [194] Xue Y F, Cai H N, Wang L, Wang F C, Zhang H F. Appl Phys Lett, 2007; 90: 081901 [195] Zhang H F, Wang A M, Li H, Sun W S, Ding B Z, Hu Z Q, Cai H N, Wang L, Li W. J Mater Res, 2006; 21: 1351 [196] Sun Y, Zhang H F, Wang A M, Fu H M, Hu Z Q, Wen C E, Hodgson P D. Appl Phys Lett, 2009; 95: 171910 [197] Sun Y. PhD Thesis. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (孙羽. 中国科学院金属研究所博士学位论文, 沈阳, 2010) [198] Jang J, Jian S, Li T, Huang J, Tsao C, Liu C. J Alloys Compd, 2009: 290 [199] Jang J S C, Ciou J Y, Hung T H, Huang J C, Du X H. Appl Phys Lett, 2008; 92: 011930 [200] Kinaka M, Kato H, Hasegawa M, Inoue A. Mater Sci Eng, 2008; A494: 299 [201] Ma H, Xu J, Ma E. Appl Phys Lett, 2003; 83: 2793 [202] Hui X, Dong W, Chen G L, Yao K F. Acta Mater, 2007; 55: 907 [203] Li H, Fan C, Tao K, Choo H, Liaw P K. Adv Mater, 2006; 18: 752 [204] Fan C, Liaw P K, Haas V, Wall J J, Choo H, Inoue A, Liu C T. Phys Rev, 2006; 74B: 014205 [205] Fan C, Li H, Kecskes L J, Tao K, Choo H, Liaw P K, Liu C T. Phys Rev Lett, 2006; 96: 145506 [206] Schroers J. Acta Mater, 2008; 56: 471
[1] 李宏祥; Seonghoon.Yi; 张新房; 王晓东 . Fe--C--Si--B--P--Cr--Mo--Al块体非晶合金的制备与压缩性能[J]. 金属学报, 2006, 42(7): 777-780 .
[2] 刘冬艳; 王成; 张海峰; 胡壮麒 . 铁基块状非晶合金的制备及性能[J]. 金属学报, 2005, 41(2): 209-213 .
[3] 秦凤香; 张海峰; 陈鹏; 李宏; 胡壮麒 . 镍基块状非晶合金的晶化动力学行为[J]. 金属学报, 2004, 40(12): 1285-1289 .
[4] 张新房; 王英敏; 彭敏; 王清; 李德俊; 董闯 . Zr--Al--Co块状非晶的成分优化[J]. 金属学报, 2004, 40(10): 1103-1103 .
[5] 刘海军 ; 阵伟荣; 王英敏 . 新型Zr-Al-Ni-Cu块状非晶合金[J]. 金属学报, 2003, 39(9): 938-942 .
[6] 彭德林; 沈军; 孙剑飞; 陈玉勇 . 氢对Zr41.2Ti13.8Cu12.5Ni10Be22.5块状非晶光谱特性的影响[J]. 金属学报, 2003, 39(6): 569-572 .
[7] 武晓峰; 张海峰; 邱克强 . 原位合成ZrC颗粒增强锆基非晶复合材料及力学性能[J]. 金属学报, 2003, 39(5): 555-560 .
[8] 张辉; 邱克强; 王中光; 臧启山; 张海峰 . Zr41.25Ti13.75Ni10Cu12.5Be22.5块状非晶合金的低周疲劳行为[J]. 金属学报, 2003, 39(4): 405-408 .
[9] 张庆生; 邓玉福; 贺连龙 . Zr55Al10Ni5Cu30块状非晶合金靠近玻璃转变点的等温纳米晶化[J]. 金属学报, 2003, 39(3): 301-304 .
[10] 郭秀丽; 李德俊; 王英敏; 羌建兵; 董闯 . 块状非晶态合金Zr65Al7.5Ni10Cu17.5的室温单轴压缩断裂行为[J]. 金属学报, 2003, 39(10): 1089-1093 .
[11] 张庆生; 张海峰; 王爱民; 丁炳哲; 胡壮麒 . Zr55Al10Ni5Cu30块状非晶合金的高温压缩断裂[J]. 金属学报, 2002, 38(8): 835-838 .
[12] 张庆生; 张海峰; 吴世丁; 丁炳哲; 胡壮麒 . Zr55Al10Ni5Cu30块状非晶合金的循环形变及疲劳特性[J]. 金属学报, 2002, 38(10): 1097-1099 .