金属学报 DOI: 10.11900/0412.1961.2024.00337 |
|
|
累积叠轧焊Cu/Nb多层材料中的滑移传递研究 |
杨然1,宋韶杰1,刘飞龙1,申熙美1,宋克兴2,刘峰1 |
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 河南省科学院 郑州 450046
|
|
Slip Transfer in Accumulative Roll Bonding Cu/Nb Multilayer
Composites |
YANG Ran 1, SONG
Shaojie 1, LIU Feilong 1, SHEN Ximei 1, SONG
Kexing 2, LIU Feng 1 |
1 State Key Laboratory of Solidification Processing,
Northwestern Polytechnical University, Xi’an 710072, China
2 Henan Academy of Sciences, Zhengzhou 450046,
China
|
引用本文:
杨然 宋韶杰 刘飞龙 申熙美 宋克兴 刘峰. 累积叠轧焊Cu/Nb多层材料中的滑移传递研究[J]. 金属学报, 10.11900/0412.1961.2024.00337.
,
,
,
,
,
.
Slip Transfer in Accumulative Roll Bonding Cu/Nb Multilayer
Composites[J]. Acta Metall Sin, 0, (): 0-0.
[1] Chee S W, Stumphy B, Vo N Q, et al. Dynamic self-organization in Cu alloys under ion irradiation [J]. Acta Mater., 2010, 58: 4088
[2] Fu E G, Misra A, Wang H, et al. Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers [J]. J. Nucl. Mater., 2010, 407: 178
[3] Zhang X, Li N, Anderoglu O, et al. Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation [J]. Nucl. Instrum. Methods Phys. Res. B, 2007, 261: 1129
[4] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials - development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
[5] Gao R, Jin M, Han F, et al. Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics [J]. Acta Mater., 2020, 197: 212
[6] Dong S, Chen T, Huang S, et al. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites [J]. Scripta Mater., 2020, 187: 323
[7] Jia N, Roters F, Eisenlohr P, et al. Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites [J]. Acta Mater., 2013, 61: 4591
[8] Bayerschen E, McBride A T, Reddy B D, et al. Review on slip transmission criteria in experiments and crystal plasticity models [J]. J. Mater. Sci., 2016, 51: 2243
[9] Zhang Y B, Song S J, Liu F. Thermo-kinetic orientation study on interface behavior of polycrystalline Cu-Nb composite by crystal plasticity finite element method [J]. Mater. Design, 2022, 223: 111215
[10] Zhou H, Wang P, Lu S. Investigation on the effects of grain boundary on deformation behavior of bicrystalline pillar by crystal plasticity finite element method [J]. Crystals, 2021, 11: 923
[11] Patriarca L, Abuzaid W, Sehitoglu H, et al. Slip transmission in bcc FeCr polycrystal [J]. Mater. Sci. Eng. A, 2013, 588: 308
[12] Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans. A, 1995, 26: 1745
[13] Xu Y S, Zhang W G, Xu L C, et al. Simulation of deformation coordination and hardening behavior in ferrite-ferrite grain boundary [J]. Acta Metall. Sin., 2023, 59: 1042
(徐永生, 张卫刚, 徐凌超等. 铁素体晶间变形协调与硬化行为模拟研究 [J]. 金属学报, 2023, 59: 1042)
[14] Alizadeh R, Pe?a-Ortega M, Bieler T R, et al. A criterion for slip transfer at grain boundaries in Al [J]. Scripta Mater., 2020, 178: 408
[15] Palomares-García A J, Pérez-Prado M T, Molina-Aldareguia J M. Slip transfer across γ-TiAl lamellae in tension [J]. Mater. Design, 2018, 146: 81
[16] Abuzaid W, Sangid M D, Sehitoglu H, et al. The role of slip transmission on plastic strain accumulation across grain boundaries [J]. Procedia IUTAM, 2012, 4: 169
[17] Ding C, Xu J, Li X, et al. Microstructural evolution and mechanical behavior of Cu/Nb multilayer composites processed by accumulative roll bonding [J]. Adv. Eng. Mater., 2020, 22: 1900702
[18] You X, Yang J, Dan C, et al. Statistical analysis of slip transfer in Al alloy based on in-situ tensile test and high-throughput computing method [J]. Int. J. Plasticity, 2023, 166: 103649
[19] Wang H, Boehlert C J, Wang Q D, et al. In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5 Zr (wt.%) at 250 ℃ [J]. Mater. Charact., 2016, 116: 8
[20] Dash S S, Li D J, Zeng X Q, et al. On the origin of deformation mechanisms in a heterostructured aluminum alloy via slip trace and lattice rotation analyses [J]. Mater. Sci. Eng. A, 2023, 867: 144723
[21] Zhang Y B, Song S J, Liu F. Thermo-kinetic characteristics on stabilizing hetero-phase interface of metal matrix composites by crystal plasticity finite element method [J]. J. Mater. Sci. Technol., 2024, 169: 53
[22] Chen J, Lu J, Cheng X, et al. In-situ study of the effect of grain boundary misorientation on plastic deformation of Inconel 718 at high temperature [J]. J. Mater. Sci., 2024: 1
[23] Sangid M D, Ezaz T, Sehitoglu H, et al. Energy of slip transmission and nucleation at grain boundaries [J]. Acta Mater., 2011, 59: 283
[24] Huang Z X,Jiang Y H,Lai C M, et al. Analysis of the correlation between the energy and crystallographic orientation of grain boundaries in Fe based on atomistic simulations [J]. Acta Metall. Sin., 2024, 60: 1289
(黄曾鑫, 蒋逸航, 赖春明等. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析 [J]. 金属学报, 2024, 60: 1289)
[25] Wang J, Misra A, Hoagland R G, et al. Slip transmission across fcc/bcc interfaces with varying interface shear strengths [J]. Acta Mater., 2012, 60: 1503
[26] Zheng S J, Yan Z, Kong X F, et al. Interface modifications on strength and plasticity of nanolayered metallic composites [J]. Acta Metall. Sin., 2022, 58: 709
(郑士建, 闫哲, 孔祥飞等. 纳米金属层状材料强塑性的界面调控 [J]. 金属学报, 2022, 58: 709) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|