Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00337
  本期目录 | 过刊浏览 |
累积叠轧焊Cu/Nb多层材料中的滑移传递研究
杨然1,宋韶杰1,刘飞龙1,申熙美1,宋克兴2,刘峰1
1 西北工业大学 凝固技术国家重点实验室  西安 710072

2 河南省科学院  郑州 450046

Slip Transfer in Accumulative Roll Bonding Cu/Nb Multilayer Composites
YANG Ran 1, SONG Shaojie 1, LIU Feilong 1, SHEN Ximei 1, SONG Kexing 2, LIU Feng 1

1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

2 Henan Academy of Sciences, Zhengzhou 450046, China

引用本文:

杨然 宋韶杰 刘飞龙 申熙美 宋克兴 刘峰. 累积叠轧焊Cu/Nb多层材料中的滑移传递研究[J]. 金属学报, 10.11900/0412.1961.2024.00337.
, , , , , . Slip Transfer in Accumulative Roll Bonding Cu/Nb Multilayer Composites[J]. Acta Metall Sin, 0, (): 0-0.

全文: PDF(1784 KB)  
摘要: 
采用累积叠轧焊(ARB)制备的fcc/bcc多层Cu/Nb复合材料中异相界面表现出显著的三维不相容性,导致材料变形过程中易发生界面不稳定和应变集中。为探明累积叠轧焊Cu/Nb多层材料中的滑移传递机制,本工作采用SEM和EBSD观察原位拉伸实验过程中滑移迹线的对齐状况和表面形貌的连续程度,系统研究了晶界和相界处的滑移传递和阻塞行为;并通过统计Luster-Morris参数(m′)和残余Burgers矢量(Δb),分析了Cu/Nb多层材料中的滑移传递规律。结果表明,Cu层相比Nb层更易发生晶界处的滑移传递,Cu晶界发生滑移传递的最小m′和最大Δb均要低于Nb晶界。Cu/Nb相界发生滑移传递的最小m′则均高于Cu晶界和Nb晶界,但最大Δb却处于2者之间。这主要归因于Cu/Nb相界具有比晶界更加复杂的结构、更大的界面能以及更低的剪切强度,滑移若要穿过fcc/bcc相界,热力学上需要更大的分切应力,动力学上则需要相界两侧的滑移系尽可能对齐,即对应较大的m′阈值和居中的Δb阈值。
关键词 滑移传递 铜铌多层复合材料 非均匀变形 原位拉伸    
Abstract

Niobium-based alloys are commonly used as superconductors in particle accelerators and fusion tokamaks. However, magnets made of these alloys experience considerable radiation damage, particularly from helium transmutation products in nuclear reactors, which tend to aggregate at grain (GBs) and phase (PBs) boundaries. This aggregation severely degrades the material’s performance. Furthermore, niobium is highly prone to oxidation at high temperatures, further restricting its applications in extreme environments. Recent studies have demonstrated that Cu/Nb multilayer composites fabricated through accumulative roll bonding (ARB) exhibit high yield strength, acceptable ductility, and excellent radiation resistance, making them highly promising for nuclear industry applications. In Cu/Nb multilayer composites with face-centered cubic/body-centered cubic structures prepared via ARB, interfacial instability and strain concentration can occur during deformation due to the high three-dimensional incompatibility of heterophase interfaces. In this study, Cu/Nb polycrystalline multilayer composites were prepared using ARB. In situ tensile tests were conducted using a scanning electron microscope to investigate the slip transfer and blocking behaviors at the GBs and PBs. These behaviors were studied by observing the slip trace alignment and surface morphology continuity. Slip transfer behavior in Cu/Nb multilayer materials was elucidated through statistical analysis of the Luster–Morris parameter m' = cosψcosκ and residual Burgers vector Δb = |bs2 bs1|, where ψ and κ represent the angles between the slip plane normal directions and the slip directions, respectively, and bs2 and bs1 are the unit Burgers vectors of the slip systems on either side of the interface. In the Cu layer, slip transfer occurs at the GBs when m′ exceeds 0.77 and Δb is less than 0.029. In the Nb layer, slip transfer occurs when m′ exceeds 0.81 and Δb is less than 0.250. For the Cu/Nb PBs, slip transfer occurs when m′ exceeds 0.93 and Δb is less than 0.170. Notably, the minimum m and maximum Δb values for slip transfer at Cu GBs are lower than those at Nb GBs, indicating that slip transfer is more likely to occur at GBs in the Cu layer. The minimum m' value for slip transfer at Cu/Nb PBs is higher than that at both Cu and Nb GBs, whereas the maximum Δb value lies between the two types of GBs. This phenomenon can be attributed to the more complex structure, higher interface energy, and lower shear strength of Cu/Nb PBs than GBs. To achieve slip transfer across fcc/bcc PBs, a larger resolved shear stress is thermodynamically required, and kinetically, the slip systems on both sides of the PB must be closely aligned, resulting in a higher m' threshold and a centered Δb threshold.

Key wordsslip transfer    Cu/Nb multilayer composites    heterogeneous deformation    in-situ tensile test
收稿日期: 2024-09-27     
基金资助:国家自然科学基金面上项目;国家自然科学基金重点项目;凝固技术国家重点实验室自主课题
[1] Chee S W, Stumphy B, Vo N Q, et al. Dynamic self-organization in Cu alloys under ion irradiation [J]. Acta Mater., 2010, 58: 4088 [2] Fu E G, Misra A, Wang H, et al. Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers [J]. J. Nucl. Mater., 2010, 407: 178 [3] Zhang X, Li N, Anderoglu O, et al. Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation [J]. Nucl. Instrum. Methods Phys. Res. B, 2007, 261: 1129 [4] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials - development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579 [5] Gao R, Jin M, Han F, et al. Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics [J]. Acta Mater., 2020, 197: 212 [6] Dong S, Chen T, Huang S, et al. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites [J]. Scripta Mater., 2020, 187: 323 [7] Jia N, Roters F, Eisenlohr P, et al. Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites [J]. Acta Mater., 2013, 61: 4591 [8] Bayerschen E, McBride A T, Reddy B D, et al. Review on slip transmission criteria in experiments and crystal plasticity models [J]. J. Mater. Sci., 2016, 51: 2243 [9] Zhang Y B, Song S J, Liu F. Thermo-kinetic orientation study on interface behavior of polycrystalline Cu-Nb composite by crystal plasticity finite element method [J]. Mater. Design, 2022, 223: 111215 [10] Zhou H, Wang P, Lu S. Investigation on the effects of grain boundary on deformation behavior of bicrystalline pillar by crystal plasticity finite element method [J]. Crystals, 2021, 11: 923 [11] Patriarca L, Abuzaid W, Sehitoglu H, et al. Slip transmission in bcc FeCr polycrystal [J]. Mater. Sci. Eng. A, 2013, 588: 308 [12] Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans. A, 1995, 26: 1745 [13] Xu Y S, Zhang W G, Xu L C, et al. Simulation of deformation coordination and hardening behavior in ferrite-ferrite grain boundary [J]. Acta Metall. Sin., 2023, 59: 1042 (徐永生, 张卫刚, 徐凌超等. 铁素体晶间变形协调与硬化行为模拟研究 [J]. 金属学报, 2023, 59: 1042) [14] Alizadeh R, Pe?a-Ortega M, Bieler T R, et al. A criterion for slip transfer at grain boundaries in Al [J]. Scripta Mater., 2020, 178: 408 [15] Palomares-García A J, Pérez-Prado M T, Molina-Aldareguia J M. Slip transfer across γ-TiAl lamellae in tension [J]. Mater. Design, 2018, 146: 81 [16] Abuzaid W, Sangid M D, Sehitoglu H, et al. The role of slip transmission on plastic strain accumulation across grain boundaries [J]. Procedia IUTAM, 2012, 4: 169 [17] Ding C, Xu J, Li X, et al. Microstructural evolution and mechanical behavior of Cu/Nb multilayer composites processed by accumulative roll bonding [J]. Adv. Eng. Mater., 2020, 22: 1900702 [18] You X, Yang J, Dan C, et al. Statistical analysis of slip transfer in Al alloy based on in-situ tensile test and high-throughput computing method [J]. Int. J. Plasticity, 2023, 166: 103649 [19] Wang H, Boehlert C J, Wang Q D, et al. In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5 Zr (wt.%) at 250 ℃ [J]. Mater. Charact., 2016, 116: 8 [20] Dash S S, Li D J, Zeng X Q, et al. On the origin of deformation mechanisms in a heterostructured aluminum alloy via slip trace and lattice rotation analyses [J]. Mater. Sci. Eng. A, 2023, 867: 144723 [21] Zhang Y B, Song S J, Liu F. Thermo-kinetic characteristics on stabilizing hetero-phase interface of metal matrix composites by crystal plasticity finite element method [J]. J. Mater. Sci. Technol., 2024, 169: 53 [22] Chen J, Lu J, Cheng X, et al. In-situ study of the effect of grain boundary misorientation on plastic deformation of Inconel 718 at high temperature [J]. J. Mater. Sci., 2024: 1 [23] Sangid M D, Ezaz T, Sehitoglu H, et al. Energy of slip transmission and nucleation at grain boundaries [J]. Acta Mater., 2011, 59: 283 [24] Huang Z X,Jiang Y H,Lai C M, et al. Analysis of the correlation between the energy and crystallographic orientation of grain boundaries in Fe based on atomistic simulations [J]. Acta Metall. Sin., 2024, 60: 1289 (黄曾鑫, 蒋逸航, 赖春明等. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析 [J]. 金属学报, 2024, 60: 1289) [25] Wang J, Misra A, Hoagland R G, et al. Slip transmission across fcc/bcc interfaces with varying interface shear strengths [J]. Acta Mater., 2012, 60: 1503 [26] Zheng S J, Yan Z, Kong X F, et al. Interface modifications on strength and plasticity of nanolayered metallic composites [J]. Acta Metall. Sin., 2022, 58: 709 (郑士建, 闫哲, 孔祥飞等. 纳米金属层状材料强塑性的界面调控 [J]. 金属学报, 2022, 58: 709)
[1] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[2] 许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
[3] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[4] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[5] 武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[6] 沈连成; 何健英; 宿彦京; 褚武扬; 乔利杰 . Ni2MnGa铁磁形状记忆合金开裂的原位研究[J]. 金属学报, 2006, 42(8): 810-814 .
[7] 郝玉琳; 杨锐 . 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报, 2005, 41(11): 1183-1189 .
[8] 李金许; 褚武扬; 高克玮; 乔利杰 . 块状非晶剪切带和微裂纹形核扩展的SEM原位研究[J]. 金属学报, 2003, 39(4): 359-363 .
[9] 陆永浩; 乔利杰; 褚武扬 . Cu-Ni-Al形状记忆合金形变、相变以及裂纹形核的相互关系[J]. 金属学报, 2001, 37(7): 686-690 .
[10] 单智伟; 杨继红 . 单晶Ni3Al裂纹扩展的TEM原位观察[J]. 金属学报, 2000, 36(3): 262-267 .
[11] 吕铮;徐永波;胡壮麒. 钴基高温合金裂尖塑性区位错结构的原位观察[J]. 金属学报, 1998, 34(2): 129-133.
[12] 张静武;刘文昌;段志翔;郑炀曾. 22Mn-13Cr-5Ni-0.2N钢裂纹Z字形扩展的TEM原位分析[J]. 金属学报, 1997, 33(9): 927-932.
[13] 李红旗;陈奇志;褚武扬. 不锈钢微裂纹形核扩展的TEM原位观察[J]. 金属学报, 1996, 32(11): 1159-1164.
[14] 朱维斗;顾海澄;郭延东. Ti-1023合金拉伸试验的电镜原位观察[J]. 金属学报, 1994, 30(10): 463-468.