Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1141-1149    DOI: 10.11900/0412.1961.2024.00079
  研究论文 本期目录 | 过刊浏览 |
C包覆Ni磁性载体负载Pt催化硝基苯加氢性能
武逸1, 司阳1, 黄彦民2, 刁江勇1, 孟繁敬2, 刘增2, 刘洪阳1()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 沧州大化股份有限公司 河北省改性异氰酸酯技术创新中心 沧州 061000
Hydrogenation of Nitrobenzene Catalyzed by Pt Supported on Carbon Coated Nickel Magnetic Supports
WU Yi1, SI Yang1, HUANG Yanmin2, DIAO Jiangyong1, MENG Fanjing2, LIU Zeng2, LIU Hongyang1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Technology Innovation Center of Modified Isocyanate of Hebei Province, Cangzhou Dahua Co. Ltd., Cangzhou 061000, China
引用本文:

武逸, 司阳, 黄彦民, 刁江勇, 孟繁敬, 刘增, 刘洪阳. C包覆Ni磁性载体负载Pt催化硝基苯加氢性能[J]. 金属学报, 2024, 60(8): 1141-1149.
Yi WU, Yang SI, Yanmin HUANG, Jiangyong DIAO, Fanjing MENG, Zeng LIU, Hongyang LIU. Hydrogenation of Nitrobenzene Catalyzed by Pt Supported on Carbon Coated Nickel Magnetic Supports[J]. Acta Metall Sin, 2024, 60(8): 1141-1149.

全文: PDF(3160 KB)   HTML
摘要: 

苯胺是一种重要的基础化工原料,在医药、染料、橡胶等领域被广泛应用。以硝基苯为原料通过液相催化加氢制备苯胺是目前主要工业生产方法之一,然而,如何从液相加氢反应体系中将催化剂高效分离和回收仍然是该领域的一个重要挑战。本工作开发了一种具有磁可分的C包覆Ni磁性载体负载Pt金属催化剂,用于高效催化硝基苯加氢制苯胺。以乙二胺四乙酸和Ni(OH)2为原料成功合成了N掺杂石墨烯包覆Ni纳米颗粒磁性载体(Ni@NG),采用沉积-沉淀法制备Ni@NG负载Pt金属催化剂(Pt/Ni@NG),通过Raman光谱、TEM、XRD和XPS对制备的Pt/Ni@NG催化剂进行结构表征。结果表明,这种Ni@NG载体具有典型的核壳结构(纳米Ni颗粒为核,石墨烯为壳层)。XPS结果表明Ni@NG载体表面N掺杂石墨烯壳含有3.64%N (原子分数)。当Pt负载量(质量分数)从0.1%增加到0.5%时,Pt在石墨烯壳层表面的分散状态经历了单原子、团簇、颗粒的转变过程。当Pt负载量为0.3%时,以Pt团簇形式分散为主的Pt/Ni@NG催化硝基苯加氢显示出最高的活性,在反应压力为1 MPa和反应温度为30℃时,硝基苯加氢的周转频率为27239.2 h-1,硝基苯在60 min内完全转化为苯胺。此外,由于Pt/Ni@NG催化剂具有优异的液相磁可分性能,催化剂经5 cyc使用后加氢活性未明显降低。

关键词 核壳结构硝基苯加氢磁可分载体N掺杂C材料    
Abstract

Aniline is an important chemical raw material widely used in various industries, including medicine, dye manufacturing, and rubber production. Catalytic liquid-phase dhydrogenation of nitrobenzene is a main industrial production method for aniline. However, the separation and recovery of the catalyst from the liquid hydrogenation system remain challenging. Graphene-encapsulated transition-metal nanoparticles (TM@G, where TM = Fe, Co, and Ni) exhibit magnetic separability and electron transfer effects, making them widely applicable in heterogeneous catalysis. In this study, a magnetically separable catalyst support, comprising graphene-encapsulated Ni nanoparticles (Ni@NG), was developed. This support was then loaded with a Pt metal catalyst for efficient catalytic hydrogenation of nitrobenzene to aniline. To fabricate the catalyst support, ethylenediaminetetraacetic acid and Ni(OH)2 were uniformly mixed in deionized water until the solution turned blue at 90°C. The resulting blue solid precursor was then dried and annealed at 600°C in argon to yield the magnetic support (Ni@NG). The support was then characterized using Raman spectroscopy, TEM, XRD, and XPS. TEM results revealed that the Ni@NG support exhibited a typical core-shell structure (with nanoscale Ni particles as the core and 2-5 layers of graphene as the shell). The Raman spectrum of the Ni@NG support exhibited the characteristic D and G bands of graphene at 1341 and 1604 cm-1, respectively. Moreover, the XRD spectrum of this support exhibited distinct peaks corresponding to Ni and graphene, while its XPS analysis confirmed the presence of an approximate nitrogen atom concentration of 3.64% in the nitrogen-doped graphene shell. Furthermore, the deposition-precipitation method was employed to synthesize a Pt-loaded Ni@NG catalyst (Pt/Ni@NG), which was later used in the catalytic hydrogenation of nitrobenzene in a liquid-phase reaction. Results revealed that increasing the Pt weight loading (mass fraction) from 0.1% to 0.5% altered the Pt dispersion state from single atoms to clusters and then to particles. In particular, at a Pt weight loading of 0.3%, the Pt/Ni@NG catalyst dominated by Pt clusters exhibited the highest activity for the hydrogenation of nitrobenzene. At this Pt weight loading, the catalyst achieved a turnover frequency of 27239.2 h-1 at 1 MPa reaction pressure under 30°C, completely converting nitrobenzene to aniline within 60 min. Furthermore, the Pt/Ni@NG catalyst maintained its activity over five testing cycles, attributed to its excellent liquid-phase magnetic separability.

Key wordscore-shell structure    nitrobenzene hydrogenation    magnetic separability    nitrogen-doped carbon material
收稿日期: 2024-03-11     
ZTFLH:  O643.38  
基金资助:国家自然科学基金项目(22072162);国家自然科学基金项目(U21B2092);中科院建制化科研平台项目,及河北省中科院重大科技成果转移转化项目(23291401Z)
通讯作者: 刘洪阳,liuhy@imr.ac.cn,主要从事亚纳米金属催化材料与能源分子高效催化转化研究
Corresponding author: LIU Hongyang, professor, Tel: (024)83970027, E-mail: liuhy@imr.ac.cn
作者简介: 武 逸,男,1999年生,硕士生
图1  Ni@NG载体的TEM分析和Ni纳米颗粒在Ni@NG载体中的尺寸分布
图2  Ni@NG载体的XPS表征结果
图3  Ni@NG载体的Raman光谱和热重(TG)曲线
图4  Ni@NG载体在加氢反应体系中的磁可分示意图
图5  0.1%Pt1/Ni@NG、0.3%Ptn/Ni@NG和0.5%Ptp/Ni@NG催化剂的高角环形暗场(HAADF) STEM像
图6  Ni@NG载体和0.1%Pt1/Ni@NG、0.3%Ptn/Ni@NG、0.5%Ptp/Ni@NG催化剂的XRD谱
图7  Ni@NG载体和0.3%Ptn/Ni@NG催化剂的N2吸脱附曲线和孔径分布曲线
图8  0.1%Pt1/Ni@NG、0.3%Ptn/Ni@NG和0.5%Ptp/Ni@NG催化剂上硝基苯加氢的转换频率(TOF),0.3%Ptn/Ni@NG催化剂的硝基苯加氢动力学曲线、硝基苯转化率和苯胺产率随时间变化曲线及硝基苯加氢循环稳定性
1 Serna P, Corma A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes [J]. ACS Catal., 2015, 5: 7114
2 Advani J H, Ravi K, Naikwadi D R, et al. Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes [J]. Dalton Trans., 2020, 49: 10431
doi: 10.1039/d0dt01708f pmid: 32676630
3 Meng X C, Cheng H Y, Akiyama Y, et al. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions [J]. J. Catal., 2009, 264: 1
4 Li Z J, Zhang M Y, Dong X L, et al. Strong electronic interaction of indium oxide with palladium single atoms induced by quenching toward enhanced hydrogenation of nitrobenzene [J]. Appl. Catal., 2022, 313B: 121462
5 Yu H B, Liu J L, Wan Q Q, et al. Synergistic effect of acid-base and redox properties of nano Au/CeO2-cube on selective hydrogenation of nitrobenzene to aniline [J]. Mol. Catal., 2023, 540: 113045
6 Hajdu V, Prekob Á, Muránszky G, et al. Amine functionalization leads to enhanced performance for nickel- and cobalt-ferrite-supported palladium catalysts in nitrobenzene hydrogenation [J]. Int. J. Mol. Sci., 2023, 24: 13347
7 Polshettiwar V, Luque R, Fihri A, et al. Magnetically recoverable nanocatalysts [J]. Chem. Rev., 2011, 111: 3036
doi: 10.1021/cr100230z pmid: 21401074
8 Chen M Q, Jiang X, Hu Q F, et al. Toehold-containing three-way junction-initiated multiple exponential amplification and CRISPR/Cas14a assistant magnetic separation enhanced visual detection of Mycobacterium tuberculosis [J]. ACS Sens., 2024, 9: 62
9 Lu D K, Qin M H, Liu C, et al. Ionic liquid-functionalized magnetic metal-organic framework nanocomposites for efficient extraction and sensitive detection of fluoroquinolone antibiotics in environmental water [J]. ACS Appl. Mater. Interfaces, 2021, 13: 5357
10 Zhang X X, Chen G P, Fu X, et al. Magneto-responsive microneedle robots for intestinal macromolecule delivery [J]. Adv. Mater., 2021, 33: 2104932
11 Zhang K, Ran J R, Zhu B C, et al. Nanoconfined nickel@carbon core-shell cocatalyst promoting highly efficient visible-light photocatalytic H2 production [J]. Small, 2018, 14: 1801705
12 Zhao L M, Qin X T, Zhang X R, et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene [J]. Adv. Mater., 2022, 34: 2110455
13 Wu J, Jin M, Li Y, et al. Earth-abundant Co nanoparticles encapsulated in N-doped hollow carbon sphere for highly selective hydrodeoxygenation of biomass-derived vanillin [J]. Chem. Eng. J., 2023, 463: 142472
14 Tu Y C, Deng J, Ma C, et al. Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution [J]. Nano Energy, 2020, 72: 104700
15 Chang J F, Wang G Z, Chang X X, et al. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells [J]. Nat. Commun., 2023, 14: 1346
doi: 10.1038/s41467-023-37011-z pmid: 36906649
16 Meng X Y, Ma C, Jiang L Z, et al. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution [J]. Angew. Chem. Int. Ed., 2020, 59: 10502
17 Deng D H, Yu L, Chen X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2013, 52: 371
doi: 10.1002/anie.201204958 pmid: 23225769
18 Gao J, Ma R, Feng L, et al. Ambient hydrogenation and deuteration of alkenes using a nanostructured Ni-core-shell catalyst [J]. Angew. Chem., 2021, 133: 18739
19 Lv X W, Xu W S, Tian W W, et al. Activity promotion of core and shell in multifunctional core-shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries [J]. Small, 2021, 17: 2101856
20 Li S, Yao N, Fan L L, et al. Supported Ni0@C-N catalyst with dual-reaction surfaces: Structure-performance relation in the selective hydrogenation of p-chloronitrobenzene [J]. Appl. Surf. Sci., 2022, 606: 154786
21 Du J, Lin Q Y, Zhang J Q, et al. N-doped core-shell mesoporous carbon spheres embedded by Ni nanoparticles for CO2 electroreduction [J]. Rare Met., 2023, 42: 2284
22 Cerezo-Navarrete C, Marin I M, García-Miquel H, et al. Magnetically induced catalytic reduction of biomass-derived oxygenated compounds in water [J]. ACS Catal., 2022, 12: 8462
doi: 10.1021/acscatal.2c01696 pmid: 37528952
23 Kuo C T, Lu Y B, Kovarik L, et al. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters [J]. ACS Catal., 2019, 9: 11030
24 Gu R T, Meng D M, She M Y, et al. Appropriate aggregation is needed for highly active Pt/Al2O3 to enable hydrogenation of chlorinated nitrobenzene [J]. Chem. Commun., 2022, 58: 7630
25 Wang H H, Shi F X, Pu M, et al. Theoretical study on nitrobenzene hydrogenation by N-doped carbon-supported late transition metal single-atom catalysts [J]. ACS Catal., 2022, 12: 11518
26 Zhang Q S, Bu J H, Wang J D, et al. Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: The shape effect of the support and key role of additional Ce3+ sites [J]. ACS Catal., 2020, 10: 10350
27 Liu L C, Concepción P, Corma A. Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds [J]. J. Catal., 2019, 369: 312
No related articles found!