|
|
C包覆Ni磁性载体负载Pt催化硝基苯加氢性能 |
武逸1, 司阳1, 黄彦民2, 刁江勇1, 孟繁敬2, 刘增2, 刘洪阳1( ) |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 沧州大化股份有限公司 河北省改性异氰酸酯技术创新中心 沧州 061000 |
|
Hydrogenation of Nitrobenzene Catalyzed by Pt Supported on Carbon Coated Nickel Magnetic Supports |
WU Yi1, SI Yang1, HUANG Yanmin2, DIAO Jiangyong1, MENG Fanjing2, LIU Zeng2, LIU Hongyang1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Technology Innovation Center of Modified Isocyanate of Hebei Province, Cangzhou Dahua Co. Ltd., Cangzhou 061000, China |
引用本文:
武逸, 司阳, 黄彦民, 刁江勇, 孟繁敬, 刘增, 刘洪阳. C包覆Ni磁性载体负载Pt催化硝基苯加氢性能[J]. 金属学报, 2024, 60(8): 1141-1149.
Yi WU,
Yang SI,
Yanmin HUANG,
Jiangyong DIAO,
Fanjing MENG,
Zeng LIU,
Hongyang LIU.
Hydrogenation of Nitrobenzene Catalyzed by Pt Supported on Carbon Coated Nickel Magnetic Supports[J]. Acta Metall Sin, 2024, 60(8): 1141-1149.
1 |
Serna P, Corma A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes [J]. ACS Catal., 2015, 5: 7114
|
2 |
Advani J H, Ravi K, Naikwadi D R, et al. Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes [J]. Dalton Trans., 2020, 49: 10431
doi: 10.1039/d0dt01708f
pmid: 32676630
|
3 |
Meng X C, Cheng H Y, Akiyama Y, et al. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions [J]. J. Catal., 2009, 264: 1
|
4 |
Li Z J, Zhang M Y, Dong X L, et al. Strong electronic interaction of indium oxide with palladium single atoms induced by quenching toward enhanced hydrogenation of nitrobenzene [J]. Appl. Catal., 2022, 313B: 121462
|
5 |
Yu H B, Liu J L, Wan Q Q, et al. Synergistic effect of acid-base and redox properties of nano Au/CeO2-cube on selective hydrogenation of nitrobenzene to aniline [J]. Mol. Catal., 2023, 540: 113045
|
6 |
Hajdu V, Prekob Á, Muránszky G, et al. Amine functionalization leads to enhanced performance for nickel- and cobalt-ferrite-supported palladium catalysts in nitrobenzene hydrogenation [J]. Int. J. Mol. Sci., 2023, 24: 13347
|
7 |
Polshettiwar V, Luque R, Fihri A, et al. Magnetically recoverable nanocatalysts [J]. Chem. Rev., 2011, 111: 3036
doi: 10.1021/cr100230z
pmid: 21401074
|
8 |
Chen M Q, Jiang X, Hu Q F, et al. Toehold-containing three-way junction-initiated multiple exponential amplification and CRISPR/Cas14a assistant magnetic separation enhanced visual detection of Mycobacterium tuberculosis [J]. ACS Sens., 2024, 9: 62
|
9 |
Lu D K, Qin M H, Liu C, et al. Ionic liquid-functionalized magnetic metal-organic framework nanocomposites for efficient extraction and sensitive detection of fluoroquinolone antibiotics in environmental water [J]. ACS Appl. Mater. Interfaces, 2021, 13: 5357
|
10 |
Zhang X X, Chen G P, Fu X, et al. Magneto-responsive microneedle robots for intestinal macromolecule delivery [J]. Adv. Mater., 2021, 33: 2104932
|
11 |
Zhang K, Ran J R, Zhu B C, et al. Nanoconfined nickel@carbon core-shell cocatalyst promoting highly efficient visible-light photocatalytic H2 production [J]. Small, 2018, 14: 1801705
|
12 |
Zhao L M, Qin X T, Zhang X R, et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene [J]. Adv. Mater., 2022, 34: 2110455
|
13 |
Wu J, Jin M, Li Y, et al. Earth-abundant Co nanoparticles encapsulated in N-doped hollow carbon sphere for highly selective hydrodeoxygenation of biomass-derived vanillin [J]. Chem. Eng. J., 2023, 463: 142472
|
14 |
Tu Y C, Deng J, Ma C, et al. Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution [J]. Nano Energy, 2020, 72: 104700
|
15 |
Chang J F, Wang G Z, Chang X X, et al. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells [J]. Nat. Commun., 2023, 14: 1346
doi: 10.1038/s41467-023-37011-z
pmid: 36906649
|
16 |
Meng X Y, Ma C, Jiang L Z, et al. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution [J]. Angew. Chem. Int. Ed., 2020, 59: 10502
|
17 |
Deng D H, Yu L, Chen X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2013, 52: 371
doi: 10.1002/anie.201204958
pmid: 23225769
|
18 |
Gao J, Ma R, Feng L, et al. Ambient hydrogenation and deuteration of alkenes using a nanostructured Ni-core-shell catalyst [J]. Angew. Chem., 2021, 133: 18739
|
19 |
Lv X W, Xu W S, Tian W W, et al. Activity promotion of core and shell in multifunctional core-shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries [J]. Small, 2021, 17: 2101856
|
20 |
Li S, Yao N, Fan L L, et al. Supported Ni0@C-N catalyst with dual-reaction surfaces: Structure-performance relation in the selective hydrogenation of p-chloronitrobenzene [J]. Appl. Surf. Sci., 2022, 606: 154786
|
21 |
Du J, Lin Q Y, Zhang J Q, et al. N-doped core-shell mesoporous carbon spheres embedded by Ni nanoparticles for CO2 electroreduction [J]. Rare Met., 2023, 42: 2284
|
22 |
Cerezo-Navarrete C, Marin I M, García-Miquel H, et al. Magnetically induced catalytic reduction of biomass-derived oxygenated compounds in water [J]. ACS Catal., 2022, 12: 8462
doi: 10.1021/acscatal.2c01696
pmid: 37528952
|
23 |
Kuo C T, Lu Y B, Kovarik L, et al. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters [J]. ACS Catal., 2019, 9: 11030
|
24 |
Gu R T, Meng D M, She M Y, et al. Appropriate aggregation is needed for highly active Pt/Al2O3 to enable hydrogenation of chlorinated nitrobenzene [J]. Chem. Commun., 2022, 58: 7630
|
25 |
Wang H H, Shi F X, Pu M, et al. Theoretical study on nitrobenzene hydrogenation by N-doped carbon-supported late transition metal single-atom catalysts [J]. ACS Catal., 2022, 12: 11518
|
26 |
Zhang Q S, Bu J H, Wang J D, et al. Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: The shape effect of the support and key role of additional Ce3+ sites [J]. ACS Catal., 2020, 10: 10350
|
27 |
Liu L C, Concepción P, Corma A. Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds [J]. J. Catal., 2019, 369: 312
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|