Please wait a minute...
Acta Metall  2019, Vol. 55 Issue (6): 751-761    DOI: 10.11900/0412.1961.2018.00486
Current Issue | Archive | Adv Search |
Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards
Bin CHEN1,2,Jie HE1,2(),Xiaojun SUN1,2,Jiuzhou ZHAO1,2,Hongxiang JIANG1,Lili ZHANG1,Hongri HAO1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Download:  HTML  PDF(13341KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pyrolysis processing was carried out on the waste printed circuit boards (WPCBs) of mobile phones to dissociate metals from non-metals and obtain mixed metals with Fe, Cu and Pb as main components. Based on the main compositions of Fe, Cu and Pb, the liquid-liquid phase separation behavior of (Fe0.4Cu0.6)100-xPbx ternary alloy has been studied experimentally. The results show that the liquid-liquid phase separation of L→L(Fe)+L(Cu, Pb) may occur during the ternary Fe-Cu-Pb alloy melt cooling in the miscibility gap. After the liquid L(Fe) solidified, the secondary liquid-liquid phase separation L(Cu, Pb)→L(Cu)+L(Pb) takes place in the residual L(Cu, Pb) liquid phase, finally resulting in a three-zone separation structure. On the basis of the behavior of the liquid-liquid phase separation, a self-organized hierarchical separation system has been designed to separate and recycle these mixed metals from WPCBs. The enrichment behavior of the minor components like Cr, Au and Cd in the separation system was explored. The effect of super-gravity level on the metal separation and recycling rates has been discussed. As a result, a new harmless route has been established to recycle metal resources in WPCBs.

Key words:  immiscible alloy      Fe-Cu-Pb alloy      liquid-liquid phase separation      waste printed circuit board      metal separation and recycling     
Received:  30 October 2018      Published:  21 March 2019
ZTFLH:  X705  
Fund: National Natural Science Foundation of China(Nos.51574216);National Natural Science Foundation of China(51774264);National Natural Science Foundation of China(51374194);Key Project of Innovation Foundation of IMR-CAS(No.SCJJ-2013-ZD-03);Natural Science Foundation of Liaoning Province(No.2015020172)
Corresponding Authors:  Jie HE     E-mail:  jiehe@imr.ac.cn

Cite this article: 

Bin CHEN,Jie HE,Xiaojun SUN,Jiuzhou ZHAO,Hongxiang JIANG,Lili ZHANG,Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards. Acta Metall, 2019, 55(6): 751-761.

URL: 

http://www.ams.org.cn/EN/10.11900/0412.1961.2018.00486     OR     http://www.ams.org.cn/EN/Y2019/V55/I6/751

Fig.1  Thermogravimetric (TG) profiles of waste printed circuit boards (WPCBs) at different heating rates
Fig.2  Waste mobile phone PCBs (a) and mixed metals of WPCBs after pyrolysis (b) (PCBs—printed circuit boards)
ElementCuFePbAuAgCrCoNiSiAlZnSnCdInBi
Content61.115.02.40.10.31.40.15.41.83.24.14.70.10.10.2
Table 1  Metal composition of the waste mobile phones PCBs
Fig.3  Macroscopic separation morphologies of (Fe0.4Cu0.6)100-xPbx (atomic fraction, %) ternary alloy (a~c) and the enlarged images of Figs.3a~c respectively (d~f)
Fig.4  Calculated miscibility gap of the Fe-Cu-Pb alloy with different concents of Pb additions (xCu—atomic fraction of Cu)
Fig.5  Schematics of solidification process of ternary (Fe0.4Cu0.6)72Pb28 alloy (a~e)
MetalFeCuPbCrCoNiSiAuAgZnSnBiInCd
Fe--------------
Cu13-------------
Pb2915------------
Cr-11228-----------
Co-1617-4----------
Ni-2413-70---------
Si-35-1915-37-38-40--------
Au8-92077-30-------
Ag2823271915-20-6------
Zn4155-5-9-18-16-4-----
Sn1172100-4-11-10-31----
Bi26150241410-22241---
In1910-12072-10-11-230-1--
Cd17621762-13-11-21010-
Table 2  The enthalpy of mixing (ΔHA-B) between various metals[41]
Fig.6  Logarithm values of the estimated molar distribution ratio of minor metals between Fe-rich and Cu-rich liquids lgKMCu/Fe at 1473 K and distribution ratios obtained in different literatures[27,48] (a), and logarithm values of the estimated molar distribution ratio of minor metals between Cu-rich and Pb-rich liquids lgKMCu/Pb at 1233 K without and with the collecting agent Al (b)
Fig.7  OM images of the sections of MFeC-MPCB-MPb-MAl (mass ratio MFeC∶MPCB∶MPb∶MAl=0.8∶1∶1.1∶0.1) (a), MFeC-MPCB (mass ratio MFeC∶MPCB=0.8∶1) (b), MCu-rich zone-MPb-MAl (mass ratio MCu-rich zone∶MPb∶MAl=1∶1.1∶0.1) (c) ingots solidified in super-gravity field (rotation rate n=4500 r/min); and Cu dendrites (d) and Pb-rich substance (e) obtained by centrifugal separation
Fig.8  Effect of rotation rate (n) on Cu content of Fe-rich zone and Fe content of Cu-rich zone
Fig.9  The motion rates (νS, ν'S) of the Fe-rich droplets at 1473 K and the Pb-rich droplets in Cu matrix at 1233 K at different rotation rates
Separated substanceCrCoNiSiAgAuZnSnBiCdIn
Fe-rich94.993.680.893.7--3.24.1---
Cu-rich5.16.418.36.392.695.183.231.61.519.09.4
Pb-rich--0.9-7.44.913.664.398.581.090.6
Table 3  The recycling rate (H) of various minor metals in different separated substance
[1] Jia J, Zhao J Z, Guo J J, et al. Immiscible Alloys and Their Manufacturing Technique [M]. Harbin: Harbin Institure of Technology Press, 2002: 1
(贾 均, 赵九洲, 郭景杰等. 难混溶合金及其制备技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1)
[2] He J, Zhao J Z, Li H L, et al. Directional solidification and microstructural refinement of immiscible alloys [J]. Metall. Mater. Trans., 2008, 39A: 1174
doi: 10.1007/s11661-008-9499-0
[3] He J, Zhao J Z. Microstructure evolution in a rapidly solidified Cu85Fe15 alloy undercooled into the metastable miscibility gap [J]. J. Mater. Sci. Technol., 2005, 21: 759
doi: 10.1016/j.jallcom.2005.0.4.009
[4] Bian X F, Zhao X L, Wu Y Q, et al. Effect of magnetic field on binodal temperature in immiscible alloys [J]. J. Appl. Phys., 2013, 114: 131907
doi: 10.1063/1.4831677
[5] Kaban I G, Hoyer W. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys: Differential scanning calorimetry, interfacial tension, and density difference measurements [J]. Phys. Rev., 2008, 77B: 125426
doi: 10.1103/PhysRevB.77.125426
[6] Wang T M, Song T, Xu J J, et al. Preparation of homogeneous Al-Bi immiscible alloy by a cooling slope method [J]. Spec. Cast. Nonferrous Alloys, 2008, 28: 578
doi: 10.3870/tzzz.2008.08.002
(王同敏, 宋 涛, 许菁菁等. 冷却斜槽法制备均质Al-Bi系难混溶合金 [J]. 特种铸造及有色合金, 2008, 28: 578)
doi: 10.3870/tzzz.2008.08.002
[7] Kolbe M, Gao J R. Liquid phase separation of Co-Cu alloys in the metastable miscibility gap [J]. Mater. Sci. Eng., 2005, A413-414: 509
doi: 10.1016/j.msea.2005.08.170
[8] Cao C D, Görler G P, Herlach D M, et al. Liquid-liquid phase separation in undercooled Co-Cu alloys [J]. Mater. Sci. Eng., 2002, A325: 503
doi: 10.1016/s0921-5093(01)01756-7
[9] Wang H P, Wei B. Positive excess volume of liquid Fe-Cu alloys resulting from liquid structure change [J]. Phys. Lett., 2010, 374A: 4787
doi: 10.1016/j.physleta.2010.09.065
[10] Gao J, Wang Y P, Zhou Z M, et al. Phase separation in undercooled Cu-Cr melts [J]. Mater. Sci. Eng., 2007, A449-451: 654
doi: 10.1016/j.msea.2006.02.379
[11] Li J Q, Ma B Q, Min S, et al. Effect of Ce addition on macroscopic core-shell structure of Cu-Sn-Bi immiscible alloy [J]. Mater. Lett., 2010, 64: 814
doi: 10.1016/j.matlet.2010.01.018
[12] Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure [J]. Science, 2002, 297: 990
doi: 10.1126/science.1073050 pmid: 12169728
[13] Wang H P, Wei B B. Understanding atomic-scale phase separation of liquid Fe-Cu alloy [J]. Chin. Sci. Bull., 2011, 56: 3416
doi: 10.1007/s11434-011-4739-x
[14] He J, Zhao J Z, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys [J]. Acta Mater., 2006, 54: 1749
doi: 10.1016/j.actamat.2005.12.023
[15] Jiang H X, Sun Q, Zhao J Z. Effect mechanism of a direct current on the solidification of immiscible alloys [J]. Chin. Phys. Lett., 2012, 29: 088104
doi: 10.1088/0256-307X/29/8/088104
[16] He J, Li H Q, Zhao J J, et al. Al-based metallic glass composites containing fcc Pb-rich crystalline spheres [J]. App. Phys. Lett., 2008, 93: 131907
doi: 10.1063/1.2993342
[17] He J, Li H Q, Yang B J, et al. Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particles [J]. J. Alloys Compd., 2010, 489: 535
doi: 10.1016/j.jallcom.2009.09.102
[18] Ziewiec K, Kędzierski Z, Zielińska-Lipiec A, et al. Formation, properties and microstructure of amorphous/crystalline composite Ag20Cu30Ti50 alloy using miscibility gap [J]. J. Alloys Compd., 2009, 482: 114
doi: 10.1016/j.jallcom.2009.04.049
[19] Kündig A A, Ohnuma M, Ohkubo T, et al. Glass formation and phase separation in the Ag-Cu-Zr system [J]. Scr. Mater., 2006, 55: 449
doi: 10.1016/j.scriptamat.2006.05.012
[20] He J, Mattern N, Tan J, et al. A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution [J]. Acta Mater., 2013, 61: 2102
doi: 10.1016/j.actamat.2012.12.031
[21] Kim M U, Ahn J P, Seok H K, et al. Application of spinodal decomposition to produce metallic glass matrix composite with simultaneous improvement of strength and plasticity [J]. Met. Mater. Int., 2009, 15: 193
doi: 10.1007/s12540-009-0193-6
[22] Eckert J, Das J, Kim K B, et al. High strength ductile Cu-base metallic glass [J]. Intermetallics, 2006, 14: 876
doi: 10.1016/j.intermet.2006.01.003
[23] He J, Wang Z Y, Hao H R, et al. Method for efficient separation and recycling of precious metals in waste circuit board [P]. Chin Pat, CN 104328281 B, 2016
(何 杰, 王中原, 郝红日等. 一种高效分离与回收废弃线路板中贵金属的方法 [P]. 中国专利, CN 104328281 B, 2016)
[24] He J, Wang Z Y, Hao H R, et al. Self-assembly separation and resource recycling method for multi-metal components in electronic waste [P]. Chin Pat, CN 104313332 B, 2016
(何 杰, 王中原, 郝红日等. 电子垃圾中多金属组分自组装分离与资源化回收的方法 [P]. 中国专利, CN 104313332 B, 2016)
[25] Chen B, He J, Xi Y Y, et al. Liquid-liquid hierarchical separation and metal recycling of waste printed circuit boards [J]. J. Hazard. Mater., 2019, 364: 388
doi: 10.1016/j.jhazmat.2018.10.022
[26] Chen B, He J, Zhao J Z. Phase separation of Fe-Cu-Pb alloy and recycling of mixed metals in waste printed circuit boards [J]. Mater. Sci. Forum, 2019, 944: 1265
doi: 10.4028/www.scientific.net/MSF.944
[27] Yamaguchi K, Takeda Y. Copper enrichment of scrap by phase separation in liquid Fe-Cu-C system [J]. Shigen Sozai, 1997, 113: 1110
(山口 勉功, 武田 要一. Fe-Cu-C系2液相分離による低品位銅スクラップからの銅の濃縮 [J]. 資源と素材, 1997, 113: 1110)
[28] State Environmental Protection Administration. Administrative measures on the prevention and control of environmental pollution by electronic waste [J]. Recycl. Resour. Circul. Econ., 2007, (6): 1
(国家环境保护总局. 电子废物污染环境防治管理办法 [J]. 再生资源与循环经济, 2007, (6): 1)
[29] Hadi P, Xu M, Lin C S K, et al. Waste printed circuit board recycling techniques and product utilization [J]. J. Hazard. Mater., 2015, 283: 234
doi: 10.1016/j.jhazmat.2014.09.032 pmid: 25285997
[30] Ministry of Environmental Protection of the People's Republic of China. List of national hazardous waste [EB/OL]. (2016-06-14). http://www.mee.gov.cn/gkml/hbb/bl/201606/t20160621_354852.htm
(中华人民共和国环境保护部. 国家危险废物名录 [EB/OL]. (2016-06-14). http://www.mee.gov.cn/gkml/hbb/bl/201606/t20160621_354852.htm)
[31] Huang K, Guo J, Xu Z M. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China [J]. J. Hazard. Mater., 2009, 164: 399
doi: 10.1016/j.jhazmat.2008.08.051 pmid: 18829162
[32] Li J, Gao B, Xu Z M. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards [J]. Environ. Sci. Technol., 2014, 48: 5171
doi: 10.1021/es405679n pmid: 24678800
[33] Marra A, Cesaro A, Belgiorno V. Separation efficiency of valuable and critical metals in WEEE mechanical treatments [J]. J. Clean. Prod., 2018, 186: 490
doi: 10.1016/j.jclepro.2018.03.112
[34] Marques A C, Marrero J M C, de Fraga Malfatti C. A review of the recycling of non-metallic fractions of printed circuit boards [J]. SpringerPlus, 2013, 2: 521
doi: 10.1186/2193-1801-2-521 pmid: 3930799
[35] Long L S, Sun S Y, Zhong S, et al. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards [J]. J. Hazard. Mater., 2010, 177: 626
doi: 10.1016/j.jhazmat.2009.12.078 pmid: 20060640
[36] Zhan L, Xu Z M. Separating criterion of Pb, Cd, Bi and Zn from metallic particles of crushed electronic wastes by vacuum evaporation [J]. Sep. Sci. Technol., 2012, 47: 913
doi: 10.1080/01496395.2011.625387
[37] Guo X Y, Liu J X. Optimization of low-temperature alkaline smelting process of crushed metal enrichment originated from waste printed circuit boards [J]. J. Cen. South Univ., 2015, 22: 1643
doi: 10.1007/s11771-015-2682-8
[38] Zhou Y H, Qiu K Q. A new technology for recycling materials from waste printed circuit boards [J]. J. Hazard. Mater., 2010, 175: 823
doi: 10.1016/j.jhazmat.2009.10.083 pmid: 19939558
[39] Lin K H, Chiang H L. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis [J]. J. Hazard. Mater., 2014, 271: 258
doi: 10.1016/j.jhazmat.2014.02.031 pmid: 24637450
[40] Hall W J, Williams P T. Separation and recovery of materials from scrap printed circuit boards [J]. Resour., Conserv. Recycl., 2007, 51: 691
doi: 10.1016/j.resconrec.2006.11.010
[41] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
[42] Yan N, Wang W L, Luo S B, et al. Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy [J]. Appl. Phys., 2013, 113A: 763
doi: 10.1007/s00339-013-7586-6
[43] Yan N, Wang W L, Wei B. Complex phase separation of ternary Co-Cu-Pb alloy under containerless processing condition [J]. J. Alloys Compd., 2013, 558: 109
doi: 10.1016/j.jallcom.2013.01.030
[44] Onderka B, Jendrzejczyk-Handzlik D, Fitzner K. Thermodynamic properties and phase equilibria in the ternary Cu-Pb-Fe system [J]. Arch. Metall. Mater., 2013, 58: 541
doi: 10.2478/amm-2013-0033
[45] He J, Mattern N, Kaban I, et al. Enhancement of glass-forming ability and mechanical behavior of zirconium-lanthanide two-phase bulk metallic glasses [J]. J. Alloys Compd., 2015, 618: 795
doi: 10.1016/j.jallcom.2014.08.226
[46] Wang Z Y, He J, Yang B J, et al. Effect of addition of elements on two-glass-forming ability of Zr-Ce-Co-Cu immiscible alloys [J]. Mater. Sci. Technol., 2017, 33: 1926
doi: 10.1080/02670836.2017.1337298
[47] Wang Z Y, He J, Yang B J, et al. Liquid-liquid phase separation and formation of two glassy phases in Zr-Ce-Co-Cu immiscible alloys [J]. Acta Metall. Sin., 2016, 52: 1379
(王中原, 何 杰, 杨柏俊等. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成 [J]. 金属学报, 2016, 52: 1379)
[48] Lu X, Nakajima K, Sakanakura H, et al. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes [J]. Waste Manag., 2012, 32: 1148
doi: 10.1016/j.wasman.2012.01.025 pmid: 22370049
[49] Yang Y H, Song B, Song G Y, et al. Enriching and separating primary copper impurity from Pb-3 mass pct Cu melt by super-gravity technology [J]. Metall. Mater. Trans., 2016, 47B: 2714
doi: 10.1007/s11663-016-0714-x
[50] Ratke L, Voorhees P W. Growth and Coarsening: Ostwald Ripening in Material Processing [M]. Berlin, Heidelberg: Springer, 2002: 242
[1] Lin ZHANG,Tiannan MAN,Engang WANG. Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys[J]. 金属学报, 2019, 55(3): 399-409.
[2] YANG Zhizeng,SUN Qian,ZHAO Jiuzhou. DIRECTIONAL SOLIDIFICATION OF MONOTECTIC COMPOSITION Al-Bi ALLOY[J]. 金属学报, 2014, 50(1): 25-31.
[3] ZHANG Junfang, WANG Yujin,LU Wenquan, ZHANG Shuguang, LI Jianguo. THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES[J]. 金属学报, 2013, 29(4): 457-463.
[4] HE Jie LI Haiquan XING Chengrao ZHAO Jiuzhou. DESIGN AND PREPARATION OF IN SITU Pb-RICH PARTICLES/Al BASE METALLIC GLASS MATRIX COMPOSITE[J]. 金属学报, 2010, 46(1): 41-46.
[5] ZHAO Jiuzhou; HU Zhuangqi. Modeling Of The Liquid--Liquid Phase Transformation Of Immiscible Alloys[J]. 金属学报, 2004, 40(1): 27-30 .
[6] XIAN Aiping; ZHANG Xiumu; LI Zhongyu; LIU Qingquan; CHEN Jizhi;LI Yiyi(International Center for Materials Physics; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1995-06-06; in revised form 1995-11-07). PREPARATION OF HOMOGENEITY IMMISCIBLE ALLOY BY MARANGONI CONVECTION[J]. 金属学报, 1996, 32(2): 113-119.
[1] ZHOU Bo LIU Yanju LENG Jinsong. A CONSTITUTIVE MODEL FOR SHAPE MEMORY ALLOY IN PURE SHEAR STATE[J]. Acta Metall Sin, 2009, 45(10): 1179 -1184 .
[2] XIAO Lin; GU Haicheng(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong Universityl Xi'an 710049). THE RELATIONSHIP BETWEEN PLASTIC DISSIPATED ENERGY, FRACTAL DIMENSION AND FATIGUE- LIFETIME OF ZIRCONIUM AND ZIRCALOY-4[J]. Acta Metall Sin, 1998, 34(7): 705 -712 .
[3] SUN Enxi;YANG Dazhi;XU Zuyao;YANG Fumiug;ZHAO Ruwen Dalian Institute of Railway Dalian University of Technology Shanghai Jiaotong University Institute of Physics; Academia Sinica; Beijing professor. PULSED MAGNETIC FIELD-INDUCED MARTENSITIC TRANSFORMATION IN AN Fe-21Ni-4Mn ALLOY[J]. Acta Metall Sin, 1990, 26(4): 12 -17 .
[4] SUN Xiukui;XU Jian;LI Yiyi Institute of Metal Research; Academia Sinica; Shenyang. EFFECT OF COMPOSITION AND HEAT TREATMENT ON HYDROGEN PERMEATION IN AUSTENITIC STAINLESS STEELS[J]. Acta Metall Sin, 1988, 24(3): 187 -192 .
[5] YANG Xuyue SUN Zhengyan ZHANG Lei. PREPARATION OF SUBMICRO AND NANOSIZED MAGNESIUM ALLOYS BY MULTIPLY COMPRESSED DEFORMATION[J]. Acta Metall Sin, 2010, 46(5): 607 -612 .
[6] LI Jianing , GONG Shuili , WANG Juan , SHAN Feihu , LI Huaixue , WU Bing . INFLUENCE OF Cu ON MICROSTRUCTURES AND WEAR RESISTANCE OF STELLITE 12 MATRIX LASER ALLOYING COATINGS ON TA15-2 TITANIUM ALLOY[J]. Acta Metall, 2014, 50(5): 547 -554 .
[7] Bo HE,Qingwu NIE,Hongyu Zhang,Hua WEI. EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS[J]. Acta Metall, 2016, 52(4): 484 -490 .
[8] Rui CHEN,Qingyan XU,Baicheng LIU. MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS[J]. Acta Metall, 2016, 52(8): 987 -999 .
[9] Zhidong ZHANG. MATHEMATICAL STRUCTURE AND THE CONJECTURED EXACT SOLUTION OF THREEDIMENSIONAL (3D) ISING MODEL[J]. Acta Metall, 2016, 52(10): 1311 -1325 .
[10] Chengyang JIANG, Yingfei YANG, Zhengyi ZHANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating[J]. Acta Metall, 2018, 54(4): 581 -590 .