Please wait a minute...
金属学报  2009, Vol. 45 Issue (1): 84-90    
  论文 本期目录 | 过刊浏览 |
低铬X65管线钢CO2腐蚀产物膜的特征及形成机制
孙建波1;柳伟1;常炜2;张忠铧3;李忠涛2;于湉2; 路民旭1
1 北京科技大学材料科学与工程学院; 北京 100083
2 中海石油(中国)有限公司研究中心; 北京 100027
3 宝山钢铁股份有限公司技术中心; 上海 201900
CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT
SUN Jianbo1;LIU Wei1;CHANG Wei2;ZHANG Zhonghua3;LI Zhongtao2;YU Tian2;LU Minxu1
1 School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
2 Research Center; China National Offshore Oil Corporation; Beijing 100027
3 Technology Center; Baoshan Iron and Steel Corp.; Ltd.; Shanghai 201900
引用本文:

孙建波 柳伟 常炜 张忠铧 李忠涛 于湉 路民旭. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制[J]. 金属学报, 2009, 45(1): 84-90.
, , , , , , . CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT[J]. Acta Metall Sin, 2009, 45(1): 84-90.

全文: PDF(1041 KB)  
摘要: 

利用高温高压CO2腐蚀模拟实验以及ESEM, EDS, XPS和SEM等分析技术, 研究了4种不同含Cr量的X65管线钢的腐蚀速率、腐蚀形态和腐蚀产物膜结构特征. 结果表明: 含Cr量高的钢平均腐蚀速率小, 无Cr和含1\%Cr的钢的腐蚀形态为局部腐蚀, 含3%和5%Cr的钢的腐蚀形态为全面腐蚀. 在高温高压CO2腐蚀环境中, 含Cr钢的腐蚀产物膜为FeCO3和Cr(OH)3竞争沉积形成的多层结构, 其中1Cr-X65和3Cr-X65的腐蚀膜具有3层结构, 5Cr-X65的腐蚀膜是双层结构. Cr在腐蚀产物膜层中出现局部富集, 远高于基体中的Cr含量. 高含Cr量使腐蚀产物膜中的Cr(OH)3含量高, 并提高了腐蚀膜的保护性能, 从而引起腐蚀形态发生转变, 腐蚀速率降低. FeCO3和Cr(OH)3共沉积层膜对低铬钢的抗CO2腐蚀性能具有关键的影响.

关键词 低铬X65钢腐蚀产物膜, 腐蚀速率腐蚀形态CO2腐蚀    
Abstract

The corrosion rates of X65 steels with different Cr contents were measured in CO2 environment under high temperature and high pressure condition. ESEM, EDS, XPS and SEM were employed to analyze the morphologies and characteristics of corrosion scales on the steels. The results show that the corrosion rate significantly decreased with increasing Cr content in the steels. An increase in Cr content< leads to a lower susceptibility to local corrosion. When the Cr content reaches up to 3%, the local corrosion can be eliminated. The competitive deposition of FeCO3 and Cr(OH)3 on low-chromium steels results in a multilayer structure of the scales. The scales on 1Cr-X65 and 3Cr-X65 steels have three-layer structure and scale on 5Cr-X65 steel has two-layer structure. Cr exists mainly as amorphous compound Cr(OH)3 in specific layer of the corrosion scales on low-chromium X65 steels. The Cr(OH)3 content of the scale increases remarkably with increasing Cr content in the steels. The high Cr(OH)3 content improves the protection performance of the scales and the corrosion resistance of low-chromium X65 steels. The rate of general corrosion and susceptibility to local corrosion are mainly dependent on the formation of codeposition layer of FeCO3 with Cr(OH)3 on low-chromium steels.

Key wordslow-chromium X65 steel    corrosion scale    corrosion rate    corrosion morphology    CO2 corrosion
收稿日期: 2008-07-10     
ZTFLH: 

TG172.9

 
基金资助:

国家自然科学基金资助项目50571014

作者简介: 孙建波, 男, 1975年生, 博士生

[1] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[2] Lu M X, Bai Z Q, Zhao X W, Zhao G X, Luo J H, Chen C F. Corros Prot, 2002; 23: 105
(路民旭, 白真权, 赵新伟, 赵国仙, 罗金恒, 陈长风. 腐蚀与防护, 2002; 23: 105)

[3] Kermani M B, Gonzales J C, Turconi G L, Perez T, Morales C. Corrosion 2005, Houston: NACE, 2005: 05111
[4] KimuraM, Miyata Y, Sakata K. Corrosion 2004, Houston: NACE, 2004: 04118
[5] Amaya H, Kondo K, Hirata H. Corrosion 98, Houston: NACE, 1998: 113
[6] Kermani M B, Gonzales J C, Turconi G L, Perez T, Morales C. Corrosion 2004, Houston: NACE, 2004: 04111
[7] Pigliacampo L, Gonzales J C, Turconi G L, Perez T, Morales C, Kermani M B. Corrosion 2006, Houston: NACE, 2006: 06133
[8] Takabe H, Ueda M. Corrosion 2002, Houston: NACE, 2002: 02041
[9] Muraki T, Hara T, Nose K, Asahi H. Corrosion 2002, Houston: NACE, 2002: 02272
[10] Nose K, Asahi H, Nice P I, Martin J. Corrosion 2001, Houston: NACE, 2001: 01082
[11] Nice P I, Takabe H, Ueda M. Corrosion 2000, Houston: NACE, 2000: 00154
[12] Inaba A, Kimura M, Yokokama H. Corros Sci, 1996; 38: 1449
[13] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2003; 39: 848
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2003; 39: 848)

[14] Kirchheim R, Heine B, Fischmeister H. Corros Sci, 1989; 29: 899
[15] Takabe H, Ueda M. Corrosion 2001, Houston: NACE, 2001: 01066.
[16] Chen C F, Lu M X, Sun D B, Zhang Z H, Chang W. Corrosion, 2005; 61: 594
[17] Nyborg R, Dugstad A. Corrosion 98, Houston: NACE, 1998: 29
[18] Crolet J L, Thevenot N, Nesic S. Corrosion, 1998; 54: 194
[19] Zhang G A, Lu M X, Wu Y S. Chin J Mater Res, 2005; 19: 537
(张国安, 路民旭, 吴荫顺. 材料研究学报, 2005; 19: 537)

[20] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2002; 38: 411
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002; 38: 411)

[21] Chen C F ,Lu M X ,Zhao G X, Bai Z Q, Yan M L, Yang Y Q. J Chin Soc Corros Prot, 2003; 23: 330
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 中国腐蚀与防护学报, 2003; 23: 330)

[22] Dugstad A. Corrosion 2006, Houston: NACE, 2006: 06111
[23] Benoit R. Database XPS: Element or Energy [2008–07–01]
http://www.lasurface.com/database/elementxps.php
[24] Ikeda A, Ueda M. Predicting CO2 Corrosion in the Oil and Gas Industry. London: The Institute of Materials, 1994: 59
[25] Dean J A. Lang′s Handbook of Chemistry. 11th Ed., New York: McGraw–Hill Book Company, 1973: 7
[26] Sato N. Corros Sci, 1987; 27: 421

[1] 魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
[2] 孙冲, 孙建波, 王勇, 王世杰, 刘建新. 超临界CO2/油/水系统中油气管材钢的腐蚀机制*[J]. 金属学报, 2014, 50(7): 811-820.
[3] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.