Please wait a minute...
金属学报  2009, Vol. 45 Issue (1): 91-96    
  论文 本期目录 | 过刊浏览 |
Nb对非晶态Fe-Co-Nd-B合金的晶化动力学的影响
徐民1;2;易军1;全明秀2;王沿东1;左良1
1 东北大学材料各向异性与织构教育部重点实验室; 沈阳 110004
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
EFFECT OF Nb ON CRYSTALLIZATION KINETICS OF Fe-Co-Nd-B AMORPHOUS ALLOYS
XU Min1;2; YI Jun1; QUAN Mingxiu2; WANG Yandong1;ZUO Liang1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education); Northeastern University; Shenyang 110004
2) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

徐民 易军 全明秀 王沿东 左良. Nb对非晶态Fe-Co-Nd-B合金的晶化动力学的影响[J]. 金属学报, 2009, 45(1): 91-96.
, , , , . EFFECT OF Nb ON CRYSTALLIZATION KINETICS OF Fe-Co-Nd-B AMORPHOUS ALLOYS[J]. Acta Metall Sin, 2009, 45(1): 91-96.

全文: PDF(1374 KB)  
摘要: 

在Fe-Co-Nd-B非晶合金中添加4%的Nb(原子分数)可延迟其晶化过程, 提高晶化温度, 并使其热稳定性显著提高. Nb抑制Fe3B晶化相的形核, 但促进Fe23B6相的形核及长大. Nb可使晶化相的平均晶粒尺寸从30-60 nm减至14-20 nm. Nb使由初始晶化温度计算的晶化激活能明显降低. Fe-Co-Nd-B合金中, α-Fe(Co), Fe3B和Nd2(Fe, Co)14B晶化相的形核过程要难于长大过程, 而加Nb后α-Fe(Co), Fe23B6和Nd2(Fe, Co)14B晶化相的长大过程要难于形核过程, 但Nb基本未改变晶化相的形核及长大机制. 非晶合金的晶化主要是一维界面控制的形核以及形核率随时间减小的三维长大过程.

关键词 铁基非晶合金晶化动力学晶化激活能局域Avrami指数    
Abstract

The addition of 4% niobium in Fe-Co-Nb--B amorphous alloy may retard the crystallization process, raise the crystallized temperature and enhance the thermal stability. The nucleation of Fe3B crystallized phase is checked while the nucleation and growth of Fe23B6 phase is promoted. The average grain sizes can be reduced from 30-60 nm to about 14-20 nm. The crystallization activation energy calculated by the onset crystallization temperatures decreases obviously. The nucleation process of α-Fe(Co), Fe3B and Nd2(Fe, Co)14B phases is more difficult than the growth process, while the growth process of α-Fe(Co), Fe23B6 and Nd2(Fe, Co)14B phases is more difficult than the nucleation process caused by the addition of niobium. However, the mechanism of the nucleation and growth of the crystallized phases is almost unchanged. The crystallization process is mainly dominated by one-dimensional nucleation and three--dimensional growth with decreasing nucleation rate.

Key wordsFe-based amorphous alloy    crystallization kinetics    crystallization activation energy    local Avrami exponent
收稿日期: 2008-01-29     
ZTFLH: 

TG139

 
基金资助:

国家自然科学基金资助项目50471075

作者简介: 徐民, 男, 1967年生, 副教授

[1] Raskin D, Smith C H. In: Luborsky F E, ed., Amorphous Metallic Alloys. London: Butterwoths, 1983: 381
[2] O′Handley R C. J Appl Phys, 1987; 62: R15
[3] Duwez P, Lin S C H. J Appl Phys, 1967; 38: 4096
[4] Masumoto T, Kimura H M, Inoue A, Waseda Y. Mater Sci Eng, 1976; 24: 141
[5] Inoue A, Masumoto T, Arakawa S, Iwadachi T. In: Canter B, ed., Rapidly Quenched Metals III. London: The Metals Society, 1978: 265
[6] Inoue A, Kobayashi K, Kanehira J, Masumoto T. Sci Rep Res Inst Tohoku Univ, 1981; 29A: 331
[7] Smith C H. In: Liebermann H H, ed., Rapidly Solidified Alloys. New York: Marcel Dekker, 1993: 617
[8] Yoshizawa Y, Yamauchi K, Yamane T, Sugihara H. J Appl Phys, 1988; 64: 6047
[9] Suzuki K, Kataoka N, Inoue A, Makino A, Masumoto T. Mater Trans JIM, 1990; 31: 743
[10] Inoue A, Gook J S. Mater Trans JIM, 1995; 36: 1180
[11] Ikarashi K, Mizushima T, Makino A, Inoue A. Mater Sci Eng, 2001; A304–306: 763
[12] Yoshida S, Mizushima T, Hatanai T, Inoue A. IEEE Trans Magn, 2000; 36: 3424
[13] Shen B L, Akiba M, Inoue A. Appl Phys Lett, 2006; 88: 131907
[14] Shen B L, Masahiro A, Inoue A. Phys Rev, 2006; 73B: 104204
[15] Shen B L, Chang C T, Zhang Z F, Inoue A. J Appl Phys, 2007; 102: 023515
[16] Amiya K, Urata A, Nishiyama N, Inoue A. J Appl Phys, 2007; 101: 09N112
[17] Shen T D, Schwarz R B. Appl Phys Lett, 1999; 75: 49
[18] Shen T D, Schwarz R B. Acta Mater, 2001; 49: 837
[19] Zhang W, Inoue A. Mater Trans, 2001; 42: 1142
[20] Zhang W, Inoue A. Mater Trans, 2001; 42: 1835
[21] Aronin A S, Abrosimova G E, Gurov A F, Kiryanov Y V, Molokanov V V. Mater Sci Eng, 2001; A304–306: 375
[22] Vyazovkin S. Thermochim Acta, 2000; 355: 155
[23] Starink M J. Thermochim Acta, 2003; 404: 163
[24] Wang H R, Gao Y L, Min G H, Hui X D, Ye Y F. Phys Lett, 2003; 314A: 81
[25] Avrami M. J Chem Phys, 1939; 7: 1103
[26] Calka A, Radlinski A P. J Mater Res, 1985; 3: 59

[1] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[2] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[3] 王大鹏 包小倩 张茂才 朱洁. 快淬Nd--Fe--B非晶厚带的晶化过程和非等温晶化动力学[J]. 金属学报, 2009, 45(2): 237-242.
[4] 吴泽宇 郭胜锋 李宁 柳林. Co对Fe--B--Y--Nb块体非晶合金玻璃形成能力及软磁性能的影响[J]. 金属学报, 2009, 45(2): 249-252.
[5] 徐民; 孙羽; 全明秀; 王沿东; 左良 . Fe--Co--Nd--Nb--B非晶合金的形成和软磁性能[J]. 金属学报, 2007, 43(7): 699-704 .
[6] 秦凤香; 张海峰; 陈鹏; 李宏; 胡壮麒 . 镍基块状非晶合金的晶化动力学行为[J]. 金属学报, 2004, 40(12): 1285-1289 .
[7] 王晓伟; 马继 . 低频脉冲磁场方法处理铁基非晶合金的内耗研究[J]. 金属学报, 2003, 39(11): 1215-1218 .
[8] 晁月盛;滕功清;谢春辉;耿岩;赖祖涵. 高密度脉冲电流对Fe-Si-B非晶合金晶化过程的影响[J]. 金属学报, 1996, 32(11): 1204-1208.
[9] 李健民;孙文声;全明秀;胡壮麒;王永忠;乔桂文. (Fe_(0.99)Mo_(0.01))_(78)Si_9B_(13)非晶合金的低温韧脆性研究[J]. 金属学报, 1995, 31(23): 493-498.
[10] 孙年祥;刘学东;李淑苓;丁炳哲;卢柯. 部分非晶态Fe_(33)Zr_(67)合金条带的表观晶化动力学[J]. 金属学报, 1995, 31(17): 206-211.
[11] 董振富;卢柯;刘学东;丁炳哲;魏文铎;王景唐. 非晶态Fe_(80)B_(20)合金的表观晶化动力学研究[J]. 金属学报, 1994, 30(17): 218-222.
[12] 高文莉;隋智通;卢柯;李淑苓;王景唐. 非晶态Pd-Cu-Si合金的晶化动力学研究[J]. 金属学报, 1992, 28(7): 65-69.
[13] 杨会生;熊小涛;徐祖雄;马如璋;涂国超;张家骥. Fe_(76.5)Cu_1Si_(13.5)B_9非晶合金晶化过程的X射线衍射研究[J]. 金属学报, 1992, 28(11): 75-80.
[14] 刘学东;王景唐. 非晶(Fe_(0.99)Cu_(0.01))_(78)Si_9B_(13)合金等温晶化动力学[J]. 金属学报, 1992, 28(11): 65-69.
[15] 卢柯;王景唐. 预退火热处理对非晶态Ni-P合金晶化动力学的影响[J]. 金属学报, 1990, 26(5): 92-96.