金属学报, 2026, 62(1): 29-46 DOI: 10.11900/0412.1961.2025.00238

综述

电弧增材制造高强度Al-Mg-Sc系合金研究进展:冶金缺陷、微观组织和力学性能

马成勇,1, 侯旭儒1,2, 赵琳,1, 阚成玲1, 曹洋1, 彭云1, 田志凌1

1 钢铁研究总院有限公司 北京 100081

2 中国工程物理研究院 机械制造工艺研究所 绵阳 621900

Research Progress on High-Strength Al-Mg-Sc Alloys Fabricated by Wire Arc Additive Manufacturing: Metallurgical Defects, Microstructure, and Performance

MA Chengyong,1, HOU Xuru1,2, ZHAO Lin,1, KAN Chengling1, CAO Yang1, PENG Yun1, TIAN Zhiling1

1 Central Iron and Steel Research Institute, Beijing 100081, China

2 Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China

通讯作者: 马成勇,machyong@163.com,主要从事先进焊接、激光加工和增材制造研究赵 琳,hhnds@aliyun.com,主要从事先进焊接、激光加工和增材制造研究

收稿日期: 2025-08-19   修回日期: 2025-10-25  

基金资助: 国家重点研发计划项目(2024YFB4609700)

Corresponding authors: MA Chengyong, professor, Tel:(010)62188291, E-mail:machyong@163.comZHAO Lin, professor, Tel:(010)62182946, E-mail:hhnds@aliyun.com

Received: 2025-08-19   Revised: 2025-10-25  

Fund supported: National Key Research and Development Program of China(2024YFB4609700)

作者简介 About authors

马成勇,男,1973年生,教授,博士

摘要

电弧增材制造(WAAM)技术因其制造成本低、沉积效率高、成形构件无尺寸限制等特点,成为大型复杂构件一体化制造最具潜力的技术之一,尤其适用于焊接性能优异的Al-Mg-Sc系合金。基于此,本文详细综述了WAAM成形Al-Mg-Sc系合金的研究进展,包括冶金缺陷、微观组织和成形性能。在WAAM中,通过优化丝材成分、打印工艺和引入层间搅拌摩擦加工(FSP)均能有效降低气孔率,改善微观组织和提升合金性能。成形合金最低气孔率约为0.026%;由于Sc强烈的微合金化作用,微观组织均为等轴晶,平均晶粒尺寸约为10 μm,成形合金表现出优异的性能,直接时效后,合金最高抗拉强度可达470 MPa,且具有优异的塑性。然而,WAAM专用Al-Mg-Sc系合金丝材的研发、冶金缺陷形成的内在机理、粗大微米级Al3(Sc1 - x, Zr x )相的调控以及多性能的探究仍需进一步解决。最后,基于机器学习在智能制造中的优势,对未来机器学习在WAAM成形中的应用进行了展望:正向性能预测与逆向成分/工艺求解,从而加速WAAM专用高强度铝合金丝材研发,并降低生产成本、缩短研制周期。

关键词: 电弧增材制造; 高强度Al-Mg-Sc合金; 冶金缺陷; 组织和性能; 机器学习

Abstract

Wire arc additive manufacturing (WAAM) has emerged as one of the most promising technologies for producing large and complex components due to its low cost, high deposition efficiency, and absence of size limitations. It is particularly suitable for Al-Mg-Sc alloys, which exhibit excellent weldability. This article provides a detailed review of studies from the past five years on WAAM Al-Mg-Sc alloys, focusing on metallurgical defects, microstructural evolution, and resulting performance. Existing researches indicated that in WAAM, optimizing wire compositions, process parameters, and introducing interlayer friction stir processing (FSP) can effectively reduce porosity, improve microstructure, and enhance performance. The lowest porosity was about 0.026%. Due to the strong microalloying effect of Sc, the microstructures were all equiaxed grains with an average grain size of about 10 μm. The alloys also exhibited excellent performance, achieving a highest tensile strength of approximately 470 MPa after direct aging, along with outstanding plasticity. However, the development of WAAM-specific Al-Mg-Sc wires, the mechanisms underlying metallurgical defect formation, the control of coarse and fine Al3(Sc1 - x, Zr x ) precipitates, and the systematic evaluation of multi-property performance still need to be further addressed. Finally, considering the advantages of machine learning (ML) in the intelligent manufacturing, this review discussed its potential applications in WAAM, including forward performance prediction and reverse optimization of alloy compositions and processing parameters. Such ML-assisted approaches were expected to accelerate the development of high-strength Al-Mg-Sc filler wires, reduce manufacturing costs, and shorten alloy and process development cycles.

Keywords: wire arc additive manufacturing (WAAM); high-strength Al-Mg-Sc alloy; metallurgical defect; microstructure and performance; machine learning

PDF (6523KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马成勇, 侯旭儒, 赵琳, 阚成玲, 曹洋, 彭云, 田志凌. 电弧增材制造高强度Al-Mg-Sc系合金研究进展:冶金缺陷、微观组织和力学性能[J]. 金属学报, 2026, 62(1): 29-46 DOI:10.11900/0412.1961.2025.00238

MA Chengyong, HOU Xuru, ZHAO Lin, KAN Chengling, CAO Yang, PENG Yun, TIAN Zhiling. Research Progress on High-Strength Al-Mg-Sc Alloys Fabricated by Wire Arc Additive Manufacturing: Metallurgical Defects, Microstructure, and Performance[J]. Acta Metallurgica Sinica, 2026, 62(1): 29-46 DOI:10.11900/0412.1961.2025.00238

作为最理想轻量化材料,铝合金因其高比强度和比刚度、良好的成形性和断裂韧性、优异的抗氧化性和耐腐蚀性能[1~3]而广泛应用于航空航天、大型船舶和特殊车辆等领域,尤其在航空航天领域中能够减轻重量、降低成本。目前,航空航天用铝合金构件的制造方法主要包括铸造、锻造和冲压等。但对于大型复杂构件,这些方法存在制造周期长、生产成本高、加工工序繁琐、一体化设计困难等诸多问题[4],特别是对于新一代航空航天用大型复杂铝合金薄壁构件,现有制造技术已不能满足其制造需求。

增材制造(additive manufacturing,AM)技术中,电弧增材制造(wire arc additive manufacturing,WAAM)技术是以电弧为热源、以金属丝材为沉积材料,按照设定路径逐层熔化金属丝材成形金属构件的先进制造技术[5,6],如图1所示,具有生产成本低、沉积效率高、制造周期短、材料利用率高和成形构件无尺寸限制等特点[7,8],是制造大型复杂金属构件最具潜力的技术之一。因此,近十年来,WAAM技术得到了国内外研究机构的广泛关注,包括哈尔滨工业大学、华中科技大学、美国南卫理公会大学和英国克兰菲尔德大学等高校以及大量科研院所[9]。研究方向主要涉及专用材料、专用装备和工程化应用等[10]

图1

图1   电弧增材制造(WAAM)示意图

Fig.1   Schematic of wire arc additive manufacturing (WAAM)


WAAM技术最早可以追溯到1925年,美国Baker公司首次利用电弧熔化丝材得到了金属制品[11]。2008年,克兰菲尔德大学基于非熔化极气体保护焊工艺WAAM技术制造了飞机外翼肋和机翼翼梁,成形尺寸达到1.5 m以上,力学性能达到锻件水平。目前,美国、澳大利亚等国海军、空军以及大量军工企业均以WAAM成形大型实体构件为导向,打印大型金属构件包括叶片(350 kg)、火箭喷嘴、火箭压力罐以及火箭壳体[12]等。最具代表性的美国Relativity Space公司利用WAAM技术完成了第四代“Stargate”火箭外壳打印,直径约为7.5 m,高度达到36.5 m[12]。WAAM技术已成为一体化制造大型复杂金属构件的主要发展方向之一,并成功应用于制造大型铝合金[13,14]、钛合金[15]、高温合金[6]以及钢铁构件[16,17]等,服务于航空航天、船舶等领域。相比于传统制造技术(铸造、锻造、轧制等),WAAM技术更加符合可持续、清洁以及资源高效利用的理念[18],具有重要的生态文明意义。

Al-Cu、Al-Zn-Mg(-Cu)和Al-Mg合金是WAAM技术中研究最广泛的铝合金材料。其中,Al-Mg合金优异的焊接性更适配于WAAM技术,但其不可热处理强化的特点导致成形合金强度较低( 350 MPa)[19,20]。研究[21,22]表明,Sc的微合金化是改善铝合金组织和性能的高效途径之一,且其不与Mg元素反应。因此,Al-Mg-Sc系合金逐渐成为航空航天和WAAM研究中的热点材料。相比于WAAM成形Al-Cu和Al-Zn-Mg(-Cu)合金以及激光粉末床(laser powder bed fusion,LPBF)成形Al-Mg-Sc系合金[23~25],WAAM制备Al-Mg-Sc系合金虽然室温拉伸强度不足,但其具有更优异的塑性(延伸率(EL) 16%)[13]、耐热性和耐腐蚀性能,在航空航天和船舶领域中具有不可替代的作用。

目前,冶金缺陷控制、微观组织和性能调控仍然是WAAM成形Al-Mg-Sc系合金关注的焦点。本文总结了近5年来WAAM成形Al-Mg-Sc系合金领域取得的一系列进展,并结合机器学习在AM中的研究热点,对未来WAAM成形Al-Mg-Sc系合金的研究方向进行了展望。

1 WAAM技术分类及其特点

根据热源不同,WAAM技术可分为三大类[5]:(1) 熔化极气体保护焊(gas metal arc welding,GMAW)增材制造技术(图2a[5]),(2) 钨极气体保护焊(gas tungsten arc welding,GTAW)增材制造技术(图2b[5]),(3) 等离子弧焊(plasma arc welding,PAW)增材制造技术(图2c[5])。GMAW-WAAM技术利用电弧熔化丝材直接沉积成形金属构件,其沉积效率是GTAW-WAAM和PAW-WAAM技术的2~3倍,但GMAW电弧稳定性较差,同时增材过程中会释放大量烟尘和飞溅,造成环境污染。因此,有关传统GMAW-WAAM技术的研究相对较少。GTAW-WAAM技术的增材过程稳定,飞溅和烟尘较少,但热源和送丝机构相互独立,送丝方向与焊枪移动方向匹配难度较大(图2d[26,27]),因此在制造复杂结构件时受到限制。PAW-WAAM以挺度更高、热量更加集中的等离子弧作为热源,热输入控制方便,成形构件精度高,但由于在增材制造中具有方向性,导致其实际应用受限,因此对其研究也相对较少。

图2

图2   三种WAAM技术原理图[5]及其与冷金属过渡(CMT)技术的特点[26,27]

Fig.2   Schematics of three types of WAAM technologies (a-c)[5] and the characteristics of them and cold metal transfer (CMT) technologies (d)[26,27] (GMAW—gas metal arc welding, GTAW—gas tungsten arc welding, PAW—plasma arc welding)

(a) GMAW-WAAM (b) GTAW-WAAM (c) PAW-WAAM


近年来,作为GMAW热源的一种,冷金属过渡(cold metal transfer,CMT)技术在WAAM中得到了广泛应用[28]。该技术是由奥地利Fronius公司开发的一种先进数字化焊接技术,如图3a~d[29]所示。与传统GMAW技术相比,CMT技术具有以下三个优势。(1) 送/抽丝运动与熔滴过渡实现数字化协调。数字化控制器实时控制送丝机,实现焊丝与熔滴精确分离;(2) 低热输入量。熔滴与熔池接触瞬间,电弧熄灭,短路发生。此时,电压和热输入量二者基本为零。短路过渡结束,焊丝回抽,实现了焊接过程中冷-热交替循环,显著降低了热输入;(3) 无飞溅过渡。短路过渡较低的热输入有效避免了普通过渡方式(射流过渡、射滴过渡等)引起的飞溅,实现了无飞溅过渡[28]。CMT技术主要包括四种模式,分别为CMT、CMT与脉冲(CMT + pulse,记为CMT + P)、CMT与变极性(CMT + advance,记为CMT + Adv)和CMT与脉冲变极性(CMT + pulse + advance,记为CMT + Padv),其电流电压波形如图3e~h所示。CMT模式包括燃弧和短路两个阶段,其热输入最高。通过引入P耦合形成CMT + P模式,能够在改善合金成形性的同时细化合金微观组织、减少焊接缺陷,适用于铝合金焊接及WAAM技术。CMT + P模式还可通过调整CMT与P的比例来精准控制电源热输入,实现高质量焊接及增材。在CMT + Adv模式中,电流和电压正负交替变化,能有效破碎金属表面氧化膜、减少缺陷。相比于CMT + Adv模式,CMT + Padv模式成形性更好,同时焊缝缺陷也较少。研究[4,7,13]表明,CMT + Adv和CMT + Padv模式适用于WAAM成形铝合金。CMT热源的出现有效解决了传统GMAW焊接过程中热输入过大、热积累和飞溅严重等问题。因此,CMT热源逐渐成为WAAM中最受欢迎的电弧热源之一,尤其适用于低熔点有色金属材料(铝合金或镁合金等)。

图3

图3   熔滴过渡示意图[29]及不同CMT模式焊接电源波形图

Fig.3   Schematics of droplet transfer (a-d)[29] and waveform diagrams of welding power sources in different CMT modes (e-h) (T means a period of the welding power)

(a) arcing stage (b) short-circuit stage (c) wire retraction (d) arcing stage

(e) CMT (f) CMT + pulse (CMT + P)

(g) CMT + advance (CMT + Adv) (h) CMT + pulse + advance (CMT + Padv)


2 Al-Mg-Sc系合金成分及元素作用

丝材成分决定了成形合金缺陷、组织和性能。作为一种典型的加工硬化铝合金,Al-Mg合金仅依靠Mg元素的固溶强化来提升合金性能(Mg含量一般为6.0%,质量分数,下同),故强化效果有限。研究[21,22]表明,过渡族元素Sc是铝合金中强化效应最显著的元素,能有效改善Al-Mg合金组织、提高性能。图4所示为Al-Sc二元合金富Al端相图[30]。凝固过程中发生共晶反应(L→Al + Al3Sc),共晶温度和成分点分别为655 ℃和0.55%。Sc在铝合金中最大溶解度约为0.32%,其溶解度随着温度降低而急剧下降。铝合金中除部分Sc以初生Al3Sc形式析出外,绝大部分Sc仍固溶于基体中,热处理后形成弥散且与基体完全共格的纳米Al3Sc相。总的来说,Sc在铝合金中具有以下作用[31~35]:(1) 微米或亚微米级Al3Sc相优先在高温熔池中形成,与Al基体错配度极小,能够作为其异质形核核心,细化组织,降低晶粒尺寸;(2) Al3Sc相具有良好的耐热性,能够钉扎晶界,抑制再结晶,提高铝合金再结晶温度;(3) Al3Sc相能够将柱状晶转变为等轴晶,细化焊缝组织,抑制焊接裂纹,改善铝合金焊接性;(4) Al3Sc相不仅能够细化组织,产生细晶强化,而且纳米Al3Sc相与Al基体完美的共格性能够产生强烈的沉淀强化,提升合金室温和高温拉伸性能。因此,含Sc铝合金强度高、热稳定性好,由此开发出的高强塑合金、耐蚀合金、高强抗中子辐照合金在航空航天、军工、核能等尖端领域具有广阔应用前景。目前,美国、俄罗斯、日本等在Al-Sc合金的研究中取得了重大突破,并已应用于航空、航天等领域。

图4

图4   富Al Al-Sc二元合金相图

Fig.4   Phase diagram of Al rich Al-Sc alloy


Al-Mg-Sc系合金中其他常见合金元素包括Mn、Zr和Ti,其作用如下。

Mn:Al-Mg合金中Mn元素含量通常 1.0%。Mn一部分固溶到基体中,产生固溶强化[36];另一部分则以Al x Mn相存在于组织中,钉扎晶界,提高合金再结晶温度,抑制晶粒粗化。在高Mg含量合金中,Mn可以减少焊接裂纹倾向。Mn的另一作用是溶解杂质Fe,形成Al x (Fe, Mn),减少Fe的有害影响。研究[37~39]表明,在AM成形合金中添加Mn元素会有更高的过饱和度,并且Mn元素和线缺陷之间的相互作用能增强位错钉扎的作用。同时,Mn元素较低的扩散率保证了其在固溶体中的稳定性[40]

Zr:Zr元素主要与Sc元素进行复合微合金化,形成微米或亚微米级Al3(Sc1 - x, Zr x )相。相比于Al3Sc相,Al3(Sc1 - x, Zr x )相与基体错配度更低,异质形核效果更好[41],同时Al3(Sc1 - x, Zr x )相热稳定性更高[41]。Zr元素的添加还能减少Sc用量,降低生产成本。

Ti:Ti元素与Zr元素作用基本一致,但Ti元素在铝合金中的扩散速率更低[40],因此其高温稳定性也更好。此外,Al3(Sc1 - x, Ti x )相与基体的错配度更低。因此,在相同成形工艺下,Al-Mg-Sc-Ti合金的微观组织更均匀细小[42]

杂质元素Si和Fe:铝合金中Si和Sc元素不仅会形成化合物(Sc2AlSi2),还会对含Sc合金固溶体的分解产生影响。Fe元素容易在晶界处形成粗大Al x (Mn, Fe)相,从而产生加工裂纹,显著降低了合金性能。因此,需严格控制Si和Fe元素含量。

3 WAAM成形Al-Mg-Sc系合金冶金缺陷

气孔和裂纹是WAAM成形铝合金中最常见的冶金缺陷。对于Al-Mg-Sc合金,其优异的焊接性能以及Sc的微合金化作用有效消除了成形合金中的裂纹缺陷[32,33]。因此,气孔成为WAAM成形Al-Mg-Sc系合金中最主要且最难解决的冶金缺陷。

WAAM成形Al-Mg-Sc系合金中气孔主要为氢气孔[43]。凝固过程中,H原子从固相中排出,经液/固界面进入液相,当液相中H含量超过其溶解度极限时,便形成氢气泡[44]。由于铝合金热导率高,熔池凝固速率极快,若气泡逃逸速率小于熔池凝固速率,氢气泡便会被凝固金属捕获而形成氢气孔[45]。H在铝合金固、液两相中巨大的溶解度差异是铝合金中极易形成气孔的根本原因,如图5[46,47]所示。气孔形成包括气泡形核、气泡长大、气泡脱离和气泡逸出4个过程,若在凝固前熔池中形成的气泡不能及时逸出,则会形成气孔缺陷。由于WAAM过程是熔化与凝固(加热与冷却)不断循环的过程。因此,气孔在分布上也呈现出明显周期性。

图5

图5   H在铝合金固、液两相中的溶解度[46,47]

Fig.5   Schematics of hydrogen supersaturation during the solidification process[47] (a) and solubility of hydrogen in aluminum versus temperature[46] (b) (C—concentration, r—radial distance, V—interface growth velocity, R—radius at the interface, Cs* and Cl*—hydrogen concentrations in the solid and liquid phases on either side of the interface, respectively, Cl—actual concentration, CsolH—solubility of hydrogen in the aluminium melt, C0—initial hydrogen content)


Hou等[43]首次研究了Sc和Zr含量对WAAM成形Al-Mg-Sc-Zr合金气孔率的影响。选用的丝材成分分别为0.72Sc + 0.23Zr和0.36Sc + 0.11Zr (质量分数,%,下同)。结果表明,丝材成分为0.72Sc + 0.23Zr时,不同工艺下成形合金中均分布着大量气孔,最高气孔率达到了7.37%;当丝材成分为0.36Sc + 0.11Zr时,合金气孔率均显著降低,最高仅约为0.61%,如图6[43]所示。Hou等[43]还发现,熔池中粗大的初生微米级Al3(Sc1 - x, Zr x )相会吸附大量H并成为氢气泡的形核场所,同时会阻碍气泡逸出。此外,Sc元素会显著增大液态熔池黏度,降低气泡逸出速率,导致0.72Sc + 0.23Zr成形合金中出现大量气孔。并提出在WAAM专用Al-Mg-Sc系合金成分设计时需降低Sc含量,通过多组元协同强化来提升其性能。

图6

图6   WAAM成形不同Sc和Zr元素含量合金的气孔率及气孔分布[43]

Fig.6   Statistical results of pores in the components of WAAW Al-Mg-Sc-Zr alloys[43]

(a-c) porosity (a), number density (b), and average diameter (c) at different welding speeds (d-g) distributions of diameter (d) and partially enlarged view (inset) in the components at different welding speeds (d, f) and spatial distributions of pores which diameter was above 50 μm (e, g) with 0.36Sc + 0.11Zr (d, e) and 0.72Sc + 0.23Zr (f, g) alloys


WAAM模式不同,则其熔滴过渡和熔池行为存在较大差异,直接影响WAAM过程稳定性,进而对成形合金气孔率产生显著影响。Ren等[48]研究了CMT、CMT + P、CMT + Adv和CMT + Padv 4种模式对WAAM成形Al-6Mg-0.55Mn-0.34Sc-0.11Zr合金润湿性、成形性和气孔的影响。结果表明,CMT模式成形合金的气孔倾向最严重,气孔率达到了1.76%;CMT + P模式成形合金的润湿性、成形性以及与基板的结合性最好,合金气孔率较低,约为0.14%;而CMT + Adv模式成形合金的气孔率最低,仅约为0.026%。Li等[49]对比分析了CMT和CMT + Padv模式对WAAM成形Al-Mg-Sc-Ti合金中气孔的影响。结果表明,两种打印模式下合金气孔率均较低,分别约为0.031%和0.028%,也说明了CMT + Adv和CMT + Padv模式时WAAM成形Al-Mg-Sc系合金具有更低的气孔率。

WAAM工艺参数会影响WAAM过程的稳定性、液态熔池停留时间和气泡逸出速率等,进一步决定着成形合金的气孔率。一般来说,增加热输入会增加液态熔池停留时间(气泡逸出时间),从而降低合金气孔率。但是过高的热输入会增加高温熔池的吸氢倾向,导致合金气孔数量反而增加[50]。Hou等[51]研究发现,WAAM热输入由60 J/mm增大至99 J/mm时,成形Al-Mg-Sc-Zr合金气孔率呈现先增加后降低的趋势(均低于0.04%),最低仅约为0.022%,表现出极高的致密度。经325 ℃、6 h时效后,合金中的气孔分布和尺寸未发生变化。

层间温度也会极大影响成形合金的气孔率。Hou等[13]研究了连续打印和层间温度100 ℃对成形Al-Mg-Sc-Zr合金气孔率的影响。结果表明,气孔均主要聚集在层间结合处,连续打印时成形合金气孔率较低,约为0.116%;而控制层间温度为100 ℃时,合金气孔率增加至0.385%,如图7[13]所示。分析发现,铝合金是氢敏感性极高的材料。因此,WAAM成形铝合金是一个吸氢过程,主要包括以下3个阶段[52]:(a) 当合金温度(T)低于250 ℃时,固态Al与水汽发生反应生成Al(OH)3,见方程(1);(b) 当T在400~600 ℃时,Al(OH)3发生分解,生成水蒸气,见方程(2);(c) 当T高于600 ℃时,熔融态Al与水蒸气反应生成[H],见方程(3)。

图7

图7   不同打印方式成形Al-Mg-Sc-Zr合金气孔分布结果[13]

Fig.7   Pore distribution results of WAAM Al-Mg-Sc-Zr alloys with different printing methods[13]

(a-c) X-ray computed tomography images of pore in components with interlayer temperature 100 oC (named IW) (a) and continuous printing (named CP) (b), and the corresponding maximum pores (c)

(d) diameter distribution of pores and partially englarged view (inset)

(e) area fraction of pores layer by layer


Als+3H2OAlOH3+32H2g      (T250 )
2AlOH3Al2O3+3H2Og (400 T600 )
All+32H2O12γ-Al2O3+3H    (T600 )

[H]可以直接溶解于高温Al液中,是H在铝合金中的主要存在形式之一。此外,第一阶段生成的H2可通过“吸附-扩散-溶解”进入铝合金熔体中[52]。故连续打印时,合金吸氢时间短,熔池停留时间长,气泡逸出时间也更长,使得合金气孔率更低;当层间温度为100 ℃时,合金吸氢时间增加,气泡逸出时间减少,使得合金气孔率增加。此外,连续打印时熔池表面积更大,气泡逸出面积也增加,气泡逸出概率增加。综上,在WAAM工艺中,连续打印时合金吸氢时间更短、气泡逸出时间更长、气泡逸出面积更大,合金气孔率更低。

Xu等[53]研究了焊枪摆动对WAAM成形Al-6Mg-0.55Sc-0.15Zr-0.15Ti合金气孔的影响。结果表明,摆动能够减少气孔数量、降低气孔尺寸,合金气孔率由0.22%降低至0.10%[53]。近年来,搅拌摩擦加工(friction stir processing,FSP)辅助WAAM (FSP-WAAM)技术得到了快速发展。Cui等[54]发现,WAAM成形Al-6Mg-0.67Mn-0.29Sc-0.23Zr-0.13Ti合金气孔率约为0.30%;而当采用FSP-WAAM技术时,成形合金气孔率接近为零。同样地,FSP-WAAM技术也被用于成形Al-Cu和Al-Zn-Mg-Cu等合金,均能有效降低合金气孔率[55~57]。因此,FSP-WAAM技术是未来WAAM成形铝合金发展的热点方向之一。

综上,针对WAAM成形Al-Mg-Sc系合金中严重的气孔缺陷,通过合理设计丝材成分、选择打印模式、优化打印工艺参数以及引入FSP均能有效降低成形合金气孔率。但是,目前的大量工作主要关注Al-Mg-Sc系合金中气孔的规律性变化,鲜有对其内在深层次的机理进行分析。针对气孔形成较多的影响因素,还需从机理上进行更深入、系统的研究。

4 WAAM成形Al-Mg-Sc系合金的组织和性能

合金成分决定了金属材料的组织和性能。针对Al-Mg-Sc系合金良好的应用前景,Wang等[58]自主研发了Al-6Mg-0.3Sc-0.1Ti和Al-6Mg-0.3Sc-0.1Zr两种丝材,采用CMT + P-WAAM技术分别制备单道多层AlMgScZr和AlMgScTi合金,系统研究了Zr和Ti元素与Sc元素的复合微合金化效应。结果表明,AlMgScZr合金中存在大量柱状晶组织,而AlMgScTi合金均为细等轴晶组织,平均晶粒尺寸由(25.9 ± 17.5) μm减小至(8.2 ± 2.5) μm,如图8ab[58]所示。因此,WAAM成形AlMgScTi合金具有更高的硬度和拉伸性能,分别为(115.1 ± 4.5) HV和372 MPa (图8cd[58])。在此基础上,Ren等[59]研究了Sc含量对WAAM成形Al-6Mg-0.7Mn-0.1Ti合金显微组织和力学性能的影响,发现随着Sc含量由0.15%增加至0.45%,合金的微观组织得到明显细化,强度先增加后降低。当Sc含量为0.30%时,沉积态合金的抗拉强度(ultimate tensile strength, UTS)最高,约为370 MPa。经350 ℃、1 h时效处理后,UTS提高至415 MPa。

图8

图8   WAAM成形Al-Mg-Sc系合金的微观组织和力学性能[58]

Fig.8   Microstructure (a, b) and mechanical properties (c, d) of WAAM Al-Mg-Sc alloys[58] (HAGBs——high-angle grain boundaries, 15°; LAGBs—low-angle grain boundaries, 2°-15°; GS—average grain size;YS—yield strength, UTS—ultimate tensile strength; TD—travelling direction, BD—building direction)

(a) AlMgScZr (b) AlMgScTi (c) hardness (d) tensile properties


一般地,Al3(Sc1 - x, Zr x )相是Al-Mg-Sc-Zr合金中的强化相。但研究[43]发现,WAAM成形Al-Mg-Sc-Zr合金中出现大量初生微米级Al3(Sc1 - x, Zr x )相,尤其是Sc元素含量较高(0.72%)时。大量Al3(Sc1 - x, Zr x )相呈不规则形状分布,尺寸在5 μm以上,会萌生裂纹,严重降低合金力学性能[43]。考虑到Al3(Sc1 - x, Zr x )相的熔点远高于Al基体熔点[13],故不能通过传统固溶处理来消除。此外,针对WAAM成形过程中复杂的热循环,尚鲜见关于其长大-粗化机理和精细调控方法的研究报道。

Gao等[60]研究了0.62Sc + 0.16Zr添加对Al-4.8Mg合金组织和性能的影响。当不添加Sc和Zr元素时,成形合金屈服强度(yield strength,YS)、UTS和EL分别约为137 MPa、267 MPa和18.1%;当添加0.62Sc + 0.16Zr后,合金拉伸性能显著提升,YS、UTS和EL分别约为191 MPa、325 MPa和13.3%。其性能提升的主要原因是初生Al3(Sc, Zr)相的晶粒细化作用和二次Al3(Sc, Zr)相的沉淀强化作用。同时,Sc和Zr元素的晶粒细化作用也有效改善了合金的抗应力腐蚀开裂能力[60]。Zhou等[61]研究了WAAM成形Al-Mg和Al-Mg-Sc-Zr合金的微观组织及其腐蚀性能,成形合金晶粒尺寸较小,约为25 μm。Al3(Sc, Zr)相的原位析出显著提升了Al-Mg-Sc-Zr合金的腐蚀性能,如图9[61]所示。对于Al-Mg-Sc-Zr合金,相比于XOZ平面,YOZ平面具有更好的耐腐蚀性能。同时还发现,WAAM过程中的动态热循环导致初生Al3(Sc, Zr)聚集分布,使得Al-Mg-Sc-Zr合金腐蚀性表现出各向异性。

图9

图9   WAAM成形Al-Mg-Sc-Zr合金的微观组织和耐腐蚀性能[61]

Fig.9   Microstructures and corrosion resistances of WAAM Al-Mg-Sc-Zr alloy[61] (ITZ—inter-layer zone, MPB—molten pool boundary, WADED—wire arc directed energy deposited, i—corrosion current density, OCP—open circuit potential)

(a, b) inverse pole figures (IPFs) (c, d) open circuit potential (c) and statistic results (d) in 3.5%NaCl solution (e-h) potentiodynamic polarization curves


WAAM成形工艺也极大影响了合金的组织和性能。因此,大量学者通过调控成形工艺及其参数来改善组织、提升性能。目前,有关WAAM成形工艺对Al-Mg-Sc系合金组织和性能的研究报道最多,包括打印模式、层间温度、热输入以及层间FSP等。

Li等[49]研究了CMT和CMT + Padv模式对成形Al-6Mg-0.7Mn-0.3Sc合金组织和性能的影响。结果显示,两种模式下合金微观组织均呈现细晶(fine grain,FG)和粗晶(coarse grain,CG)分布。CMT模式时,合金组织的平均晶粒尺寸约为13.38 μm;CMT + Padv模式时,组织得到明显细化,平均晶粒尺寸降低至7.1 μm,如图10ab[49]所示。并认为CMT + Padv模式独特的液滴过渡过程和较低的热输入使得合金呈现更明显的双峰微观结构(图10c[49]),表现出更粗大的CG和更细小、面积占比更多的FG。沉积态合金具有优异的拉伸性能,YS、UTS和EL分别为(223.0 ± 0.9) MPa、(408.5 ± 3.2) MPa和20.6% ± 1.7% (图10d[49]),理论计算显示,合金强化机制为固溶强化和细晶强化,而非沉淀强化。

图10

图10   不同打印模式时WAAM成形Al-Mg-Sc-Ti合金组织和力学性能[49]

Fig.10   Microstructure and mechanical properties of WAAM Al-Mg-Sc-Ti alloys with different printing modes[49] (EL—elongation, FG—fine grain, CG—coarse grain)

(a) CMT (b) CMT + PA (Padv)

(c) schematic of microstructures (d) tensile properties


层间温度会改变成形合金的冷却速率,进而影响合金的组织和性能。研究[13]表明,连续打印和控制层间温度(100 ℃)成形合金的微观组织均为等轴晶,表现为粗等轴晶(coarse equiaxed grain,CEG)和细等轴晶(fine equiaxed grain,FEG)交替分布,如图11[13]所示。层间温度为100 ℃时,合金组织的平均晶粒尺寸为(10.51 ± 0.61) μm (图11a[13]);连续打印时,平均晶粒尺寸略微增大,为(11.85 ± 5.86) μm (图11b[13])。根据CMT热源特性,该工作首次阐明了WAAM成形Al-Mg-Sc-Zr合金微观组织的演变机理,提出了CMT热源短路过渡与燃弧的交替变化是致使合金微观组织呈FEG和CEG交替分布的主要原因,如图12a~f[13]所示。成形合金经325 ℃、6 h时效处理后,拉伸性能显著提升,层间温度为100 ℃时,合金YS、UTS和EL分别为(261 ± 1) MPa 、(400 ± 1) MPa和20.5% ± 0.9%;连续打印时,合金强度降低,YS、UTS和EL分别为(240 ± 17) MPa、(383 ± 13) MPa和16.8% ± 2.7%。这是由于连续打印较慢的冷却速率导致合金组织中初生相Al3(Sc, Zr)相数量增加,进一步使得热处理后组织中纳米Al3Sc相数量更少,强化效果减弱。理论计算表明,两种打印方式下,合金的主要强化机制均为固溶强化和沉淀强化(图12g[13])。

图11

图11   控制层间温度(100 ℃)和连续打印成形Al-Mg-Sc-Zr合金的微观组织[13]

Fig.11   Microstructures of WAAM Al-Mg-Sc-Zr alloys[13] (RZ—remelted zone, MZ—middle zone, TZ—top zone, FEG—fine equiaxed grain, CEG—coarse equiaxed grain)

(a) interlayer temperature 100 oC

(b) continuous printing


图12

图12   WAAM成形Al-Mg-Sc-Zr合金微观组织演变机理及强化机制[13]

Fig.12   Microstructure evolution mechanisms (a-f) and strengthening mechanism (g) of WAAM Al-Mg-Sc-Zr alloy[13] (FGZ—fine equiaxed grain zone, CGZ—coarse equiaxed grain zone; σ0 is the YS of pure Al (30-50 MPa); σHP, σSS, σP, and σD are the YS induced by grain refinement, solid solution strengthening, precipitation strengthening, and dislocation strengthening, respectively)


此外,Hou等[51]研究了3种热输入(60、79和99 J/mm)对WAAM成形Al-Mg-Sc-Zr合金组织和性能的影响。结果表明,对于Al-Mg-Sc-Zr合金,适当增大热输入会细化组织中的CEG,合金平均晶粒尺寸由(13.09 ± 9.07) μm减小至(11.00 ± 4.16) μm。当热输入为99 J/mm时,合金微观组织均为FEG,拉伸性能表现出各向同性。其主要原因是热输入的增加促进了熔池中析出大量细小、弥散分布的Al3(Sc, Zr)相,异质形核效应显著增强。热输入为79 J/mm时,合金具有最优异的拉伸性能,YS、UTS和EL分别为(267 ± 2) MPa、(423 ± 3) MPa和24% ± 1%。Xu等[53]研究发现,焊枪摆动能够细化Al-6Mg-0.55Sc-0.15Zr-0.15Ti合金的微观组织,平均晶粒尺寸由11.69 μm减小至10.26 μm,UTS由332 MPa增加至357 MPa,同时EL由13%提升至24%,实现了强度和塑性的协同提升。

FSP不仅能够消除气孔,而且能有效改善合金组织和性能。Cui等[54]发现,在Al-Mg合金中引入Sc + Zr + Ti元素显著细化了组织,晶粒尺寸由29.9 μm减小至6.3 μm,UTS由(242 ± 9) MPa增加至(274 ± 4) MPa;而当引入层间FSP技术时,合金平均晶粒尺寸显著降低至0.92 μm,强度和塑性得到极大提升。经375 ℃、2 h时效处理后,UTS和EL分别约为438 MPa和14.8%。此外还发现,FSP-WAAM成形合金能够极大提升合金的疲劳强度[62]

图13[13,49,51,53,54,58,59,61,63,64]总结了WAAM成形Al-Mg-Sc系合金强度与塑性的关系。对比于LPBF成形Al-Mg-Sc系合金,有关WAAM成形Al-Mg-Sc系合金的研究报道仍然较少。合金强度主要集中在350~430 MPa,EL均在16%以上。其中,FSP-WAAM成形合金最高强度达到470 MPa,且断后伸长率在20%以上。当然,FSP-WAAM技术在复杂构件的生产中也存在一定局限性。

图13

图13   WAAM成形Al-Mg-Sc系合金强度与塑性的关系[13,49,51,53,54,58,59,61,63,64]

Fig.13   Relationship between UTS and EL of WAAM Al-Mg-Sc alloys[13,49,51,53,54,58,59,61,63,64] (FSP—friction stir processing)


5 机器学习在WAAM中的应用

智能制造中,AM技术和机器学习(machine learning,ML)被认为是工业4.0的重要创新[65]。近年来,ML在WAAM中的研究引起了国内外学者的大量关注。作为人工智能的一个分支,ML具备从数据中不断学习并基于数据建立ML模型的能力,以对未知数据进行预测或判断。相较于数值模拟计算方法,ML不需要事先深入了解模型的内在机理,而是通过算法对模型进行调整,并利用数据进行模型训练[66]

ML主要包括监督学习、无监督学习、深度学习以及增量学习。监督学习是一种处理带有标签数据的机器学习方法,通过使用既有特征又有标签的数据集训练模型,建立输入到输出的映射函数,从而找到特征与标签之间的关系,以对未知数据进行预测。无监督学习是处理无标签的数据,通过训练发现无标签数据中的潜在关系,通常应用于聚类和降维等场景。无监督学习与监督学习最主要的区别在于无监督学习不需要事先知道数据集的类别标签。深度学习是一种基于样本数据通过一定的训练方法得到多层次深度网络结构的机器学习过程[67]。增量学习仅对新数据进行训练以获取新知识,同时保留旧知识,通过迭代优化能够识别和更新新的类别[68]

目前,常用的机器学习算法包括K近邻算法(K-nearest neighbor,KNN)、支持向量机(support vector machines,SVM)、线性回归(linear regression,LR)、人工神经网络(artificial neural network,ANN)和随机森林(random forest,RF)[69]

ML算法在WAAM中的应用主要包括工艺设计、过程缺陷监测以及工艺参数与成形构件最终性能之间的联系。工艺设计方面包含了打印路径规划[70~72]、熔化效率[73]、残余应力[74]和焊道温度[75,76]等。Ding等[71]提出了一种拐角路径优化算法,利用ANN模型辅助路径规划,通过扫描速率和送丝速率控制熔池长度和宽度,确定与拐角路径匹配的自适应工艺参数,以实现拐角处无空隙沉积,如图14a[71]所示。Wu等[74]提出了一种残余应力影响因素敏感性分析方法,利用有限元法建立热力耦合数值计算模型,将工艺参数及热力学变量作为ML模型输入,残余应力作为ML模型输出,训练ANN模型和RF模型,如图14b[74]所示。并分别基于ANN的参数敏感性分析和RF模型的特征重要性值,研究了5种WAAM中残余应力影响变量的敏感性。

图14

图14   机器学习算法在WAAM中的应用[71,74]

Fig.14   Application of machine learning (ML) algorithm in WAAM (TS—travel speed, WFS—wire feed rate, RF—random forest, ANN—artificial neural network, T—temperature, F—residual stress)

(a) path optimization[71]

(b) prediction of residual stress[74]


ML提高了对WAAM成形构件缺陷检测及预测的准确性,极大提升了响应速度,减少了人为干预的误差[70]。此外,在构件成形精度和力学性能方面,ML模型可通过大量历史数据及测量结果,实现对加工过程中沉积层宽度、高度及未知工件残余应力、拉伸性能等力学特性的预测,大大减少了重复表征及后处理成本[71,72]。另外,通过人工重复试验确定所需的加工参数会耗费大量资金和时间,ML在实验初期的工艺参数选取上也发挥了重要作用。基于不同参数下的加工实验结果,并结合遗传算法等手段,ML模型可迭代优化、逆向求解出目标结果下的最佳工艺参数,从而减少了大量重复试验成本[75]

为提高成形件质量,电压传感器已被广泛应用于监测WAAM过程中出现的缺陷。Li等[77]提出了一种基于增量学习的WAAM缺陷检测系统,该系统采集WAAM过程中的焊接电流和电压信号,如图15a[77]所示;针对采集的电流与电压信号进行特征提取,并提出一种分数评估算法,根据分数大小判断缺陷的类型(图15b[77])。该SVM增量学习模型不断迭代优化,可以随时训练新数据,而无需保留大量训练数据。实验结果表明,SVM增量学习模型可以较好地对正常、起弧缺陷、熄弧缺陷和熔池偏移缺陷进行分类,如图15cd[77]所示。

图15

图15   基于增强学习的WAAM缺陷监测流程[77]

Fig.15   Defect monitoring process based on reinforcement learning in WAAM[77]

(a) data collection

(b) feature extraction

(c, d) support vector machines (SVM) classification results


针对工艺参数优化问题,可以通过实验试错[78]或建立物理仿真模型[79]方式,寻找最佳工艺参数。然而,第一种方法试错材料成本高,第二种方法效率低,无法适应当前快节奏的工业增材制造。Oh等[80]基于SVM算法构建了与送丝速率和扫描速率相关的起弧区域焊道高度和宽度回归模型以及中间区域焊道高度和宽度回归模型。该回归模型不仅可以根据给定的焊道高度和宽度确定最佳的工艺参数,还能够根据现有的工艺参数预测每层焊道的形状(高度和宽度)。结果表明,ML模型是解决金属零件工艺参数研发周期过长问题的有效工具。目前,ML已经广泛应用于新材料的研发[81~83],但在WAAM专用铝合金中还鲜见相关报道。

6 总结与展望

本文综述了近5年WAAM成形高强度Al-Mg-Sc系合金冶金缺陷、微观组织和成形性能的研究进展,主要结论如下。

(1) WAAM成形Al-Mg-Sc系合金冶金缺陷主要为气孔,Sc + Zr元素含量、打印模式、成形工艺参数等均会显著影响成形合金气孔率。合理设计丝材成分、选择打印模式、优化打印工艺参数以及引入FSP技术均能有效降低合金气孔率。

(2) WAAM成形Al-Mg-Sc系合金的微观组织主要为等轴晶,组织分布均匀,典型形貌表现为粗等轴晶和细等轴晶交替分布,平均晶粒尺寸在10 μm左右。热源种类和熔滴过渡方式极大程度决定了合金微观组织形貌。

(3) WAAM成形Al-Mg-Sc系合金的UTS在350~430 MPa,同时EL均在16%以上。FSP技术能进一步提升合金强度,最高达到470 MPa,且表现出良好的塑性。

目前,WAAM成形Al-Mg-Sc系合金仍存在以下严重问题。

(1) 专用Al-Mg-Sc系丝材。目前,基于平衡凝固过程设计的传统合金成分难以满足增材制造的非平衡冶金动力学特点,WAAM所用铝合金丝材主要为传统焊接用焊丝(ER5356、ER5183等)、Al-6Mg-0.3Sc-0.1Zr、Al-6Mg-0.7Mn-0.3Sc-0.1Ti等,如何突破传统限制(Mg的加工硬化、Sc在Al基体中较低固溶度等)进行专用材料的原始创新是需要解决的首要问题。

(2) “零缺陷”合金制备。针对航空航天对结构件极高的使用标准(动态性能),缺陷使得现有成形Al-Mg-Sc系合金仍然不能满足其使用需求。缺陷不能完全消除的主要原因是其形成机理尚不明确,现有报道只是对其规律性进行了总结,而未根据WAAM特点进行深入剖析。因此,亟需揭示缺陷形成机理,并根据形成机理对现有热源进行改进或对成形工艺进行创新,制备出“零缺陷” Al-Mg-Sc系合金。

(3) 初生微米级Al3(Sc, Zr)相。一般来讲,增加Sc含量会提升Al-Mg-Sc系合金的强度,但WAAM热源特性决定了成形合金中不可避免地出现微米级Al3(Sc, Zr)相,尤其是当Sc含量超过0.67%时。微米级Al3(Sc, Zr)相能够作为铝合金异质形核核心,改善组织、提升性能。然而作为金属间化合物,Al3(Sc, Zr)相也是一种硬质相,在应力作用下容易破碎而诱发裂纹(特别是四面体的尖角处),从而降低合金强度。如何精细控制其尺寸和形貌,降低其对性能的害处,提高其异质形核效果,最大限度利用其优点来提升成形合金性能是未来需要解决的又一问题。

(4) 多性能探究。相比于其他铝合金,Al-Mg-Sc系合金的优势不仅在于其优异强塑性,还在于其优异的高温性能和耐腐蚀性能等。但调研显示鲜有关于其高温性能的报道,同时关于其耐腐蚀性能的报道也较少。因此,根据其使用需求,需通过进一步合金化与工艺调控,提升合金性能,拓展WAAM成形Al-Mg-Sc系合金的应用范围,充分发挥WAAM技术和Al-Mg-Sc系合金的优势。

(5) ML应用。ML已广泛应用于WAAM成形构件的工艺参数优化和实时控制、缺陷检测和质量预测等方面,正推动铝合金WAAM从“经验驱动”迈向“数据驱动”。然而,ML还未应用到WAAM成形Al-Mg-Sc系合金中,如何利用ML来正向预测不同成分合金组织和性能、逆向求解特定合金所需的成分及打印工艺参数是未来发展的主要方向,不仅能加速材料研发,还能降低生产成本、缩短研制周期。

参考文献

Montevecchi F, Venturini G, Grossi N, et al.

Idle time selection for wire-arc additive manufacturing: A finite element-based technique

[J]. Addit. Manuf., 2018, 21: 479

[本文引用: 1]

Gordon J V, Haden C V, Nied H F, et al.

Fatigue crack growth anisotropy, texture and residual stress in austenitic steel made by wire and arc additive manufacturing

[J]. Mater. Sci. Eng., 2018, A724: 431

Wang G Q, Zhao Y H, Hao Y F.

Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing

[J]. J. Mater. Sci. Technol., 2018, 34: 73

[本文引用: 1]

Zou Y, Cao L F, Wu X D, et al.

Revealing the coarsening behavior of precipitates and its effect on the thermal stability in Tʹ and ηʹ dual-phase strengthened Al-Zn-Mg-Cu alloys

[J]. J. Mater. Sci. Technol., 2025, 220: 54

[本文引用: 2]

Wu B T, Pan Z X, Ding D H, et al.

A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement

[J]. J. Manuf. Process., 2018, 35: 127

[本文引用: 7]

Dhinakaran V, Ajith J, Fahmidha A F Y, et al.

Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys—A review

[J]. Mater. Today: Proceed., 2020, 21: 920

[本文引用: 2]

Derekar K S.

A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium

[J]. Mater. Sci. Technol., 2018, 34: 895

[本文引用: 2]

DebRoy T, Wei H L, Zuback J S, et al.

Additive manufacturing of metallic components—Process, structure and properties

[J]. Prog. Mater. Sci., 2018, 92: 112

[本文引用: 1]

Li Y H, Wu S J, Wang J S, et al.

Microstructure homogeneity and strength-toughness balance in submerged arc additive manufactured Mn-Ni-Mo high-strength steel by unique intrinsic heat treatment

[J]. J. Mater. Process. Technol., 2022, 307: 117682

[本文引用: 1]

Rodideal N, Machado C M, Infante V, et al.

Mechanical characterization and fatigue assessment of wire and arc additively manufactured HSLA steel parts

[J]. Int. J. Fatigue, 2022, 164: 107146

[本文引用: 1]

Zhu S, Du W B.

State-of-art of wire arc additive remanufacturing technology

[J]. Electric Welding Machine, 2020, 50(9): 251

[本文引用: 1]

朱 胜, 杜文博.

电弧增材再制造技术研究进展

[J]. 电焊机, 2020, 50(9): 251

[本文引用: 1]

Hou X R.

Study on microstructure evolution mechanism and performance control of high-strength Al-Mg-Sc alloys fabricated by wire arc additive manufacturing

[D]. Beijing: University of Science and Technology Beijing, 2025

[本文引用: 2]

侯旭儒.

电弧增材制造高强度Al-Mg-Sc系合金组织演变机理与性能调控研究

[D]. 北京: 北京科技大学, 2025

[本文引用: 2]

Hou X R, Zhao L, Ren S B, et al.

A comparative study on Al-Mg-Sc-Zr alloy fabricated by wire arc additive manufacturing with controlling interlayer temperature and continuous printing: Porosity, microstructure, and mechanical properties

[J]. J. Mater. Sci. Technol., 2024, 193: 199

[本文引用: 21]

Kazanas P, Deherkar P, Almeida P, et al.

Fabrication of geometrical features using wire and arc additive manufacture

[J]. Proc. Inst. Mech. Eng., 2012, 226B: 1042

[本文引用: 1]

Bermingham M J, Thomson-Larkins J, St John D H, et al.

Sensitivity of Ti-6Al-4V components to oxidation during out of chamber Wire + Arc Additive Manufacturing

[J]. J. Mater. Process. Technol., 2018, 258: 29

[本文引用: 1]

Williams S W, Martina F, Addison A C, et al.

Wire + arc additive manufacturing

[J]. Mater. Sci. Technol., 2016, 32: 641

[本文引用: 1]

Hou X R, Zhao L, Ren S B, et al.

Effect of heat input on microstructure and mechanical properties of marine high strength steel fabricated by wire arc additive manufacturing

[J]. Acta Metall. Sin., 2023, 59: 1311

[本文引用: 1]

侯旭儒, 赵 琳, 任淑彬 .

热输入对电弧增材制造船用高强钢组织与力学性能的影响

[J]. 金属学报, 2023, 59: 1311

[本文引用: 1]

Gu J L, Gao M J, Yang S L, et al.

Pore formation and evolution in wire + arc additively manufactured 2319 Al alloy

[J]. Addit. Manuf., 2019, 30: 100900

[本文引用: 1]

Su C C, Chen X Z, Gao C, et al.

Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM

[J]. Appl. Surf. Sci., 2019, 486: 431

[本文引用: 1]

Panchenko O, Kurushkin D, Mushnikov I, et al.

A high-performance WAAM process for Al-Mg-Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed

[J]. Mater. Des., 2020, 195: 109040

[本文引用: 1]

Røyset J, Ryum N.

Scandium in aluminium alloys

[J]. Int. Mater. Rev., 2005, 50: 19

[本文引用: 2]

Davydov V G, Rostova T D, Zakharov V V, et al.

Scientific principles of making an alloying addition of scandium to aluminium alloys

[J]. Mater. Sci. Eng., 2000, A280: 30

[本文引用: 2]

Hua Q, Wang W J, Li R D, et al.

Microstructures and mechanical properties of Al-Mg-Sc-Zr alloy additively manufactured by laser direct energy deposition

[J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100057

[本文引用: 1]

Wang D, Feng Y W, Liu L Q, et al.

Influence mechanism of process parameters on relative density, microstructure, and mechanical properties of low Sc-content Al-Mg-Sc-Zr alloy fabricated by selective laser melting

[J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100034

Shen X F, Cheng Z Y, Wang C G, et al.

Effect of heat treatments on the microstructure and mechanical properties of Al-Mg-Sc-Zr alloy fabricated by selective laser melting

[J]. Opt. Laser. Technol., 2021, 143: 107312

[本文引用: 1]

Nikam P P, Arun D, Ramkumar K D, et al.

Microstructure characterization and tensile properties of CMT-based wire plus arc additive manufactured ER2594

[J]. Mater. Charact., 2020, 169: 110671

[本文引用: 3]

Kopf T, Glück T, Gruber D, et al.

Process modeling and control for additive manufacturing of Ti-6Al-4V using plasma arc welding-methodology and experimental validation

[J]. J. Manuf. Process., 2024, 126: 12

[本文引用: 3]

Çam G.

Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)

[J]. Mater. Today: Proceed., 2022, 62: 77

[本文引用: 2]

Lv F Y, Wang L L, Gao Z N, et al.

Influence mechanism of arc characteristics on droplet transfer behavior in CMT-based additive manufacturing

[J]. J. Mech. Eng., 2023, 59: 267

[本文引用: 3]

吕飞阅, 王磊磊, 高转妮 .

CMT电弧增材制造过程电弧特性对熔滴过渡行为的影响机理研究

[J]. 机械工程学报, 2023, 59: 267

[本文引用: 3]

Norman A F, Prangnell P B, Mcewen R S.

The solidification behaviour of dilute aluminium-scandium alloys

[J]. Acta Mater., 1998, 46: 5715

[本文引用: 1]

Deng Y, Yin Z M, Zhao K, et al.

Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al-Zn-Mg alloys

[J]. J. Alloy. Compd., 2012, 530: 71

[本文引用: 1]

Huang X, Pan Q L, Li B, et al.

Effect of minor Sc on microstructure and mechanical properties of Al-Zn-Mg-Zr alloy metal-inert gas welds

[J]. J. Alloy. Compd., 2015, 629: 197

[本文引用: 1]

Dev S, Stuart A A, Kumaar R C R D, et al.

Effect of scandium additions on microstructure and mechanical properties of Al-Zn-Mg alloy welds

[J]. Mater. Sci. Eng., 2007, A467: 132

[本文引用: 1]

Argade G R, Kumar N, Mishra R S.

Stress corrosion cracking susceptibility of ultrafine grained Al-Mg-Sc alloy

[J]. Mater. Sci. Eng., 2013, A565: 80

Filatov Y A, Yelagin V I, Zakharov V V.

New Al-Mg-Sc alloys

[J]. Mater. Sci. Eng., 2000, A280: 97

[本文引用: 1]

Ryen Ø, Holmedal B, Nijs O, et al.

Strengthening mechanisms in solid solution aluminum alloys

[J]. Metall. Mater. Trans., 2006, 37A: 1999

[本文引用: 1]

Li R D, Wang M B, Li Z M, et al.

Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms

[J]. Acta Mater., 2020, 193: 83

[本文引用: 1]

Shi Y J, Yang K, Kairy S K, et al.

Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting

[J]. Mater. Sci. Eng., 2018, A732: 41

Wang Z H, Lin X, Kang N, et al.

Making selective-laser-melted high-strength Al-Mg-Sc-Zr alloy tough via ultrafine and heterogeneous microstructure

[J]. Scr. Mater., 2021, 203: 114052

[本文引用: 1]

Marquis E A, Seidman D N.

Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy

[J]. Acta Mater., 2005, 53: 4259

[本文引用: 2]

Schmidtke K, Palm F, Hawkins A, et al.

Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing

[J]. Phys. Proc., 2011, 12: 369

[本文引用: 2]

Harada Y, Dunand D C.

Microstructure of Al3Sc with ternary transition-metal additions

[J]. Mater. Sci. Eng., 2002, A329-331: 686

[本文引用: 1]

Hou X R, Zhao L, Ren S B, et al.

Study on the effects of alloying elements on porosity in Al-Mg-Sc-Zr alloy fabricated by wire arc directed energy deposition

[J]. Addit. Manuf., 2024, 88: 104260

[本文引用: 8]

Anyalebechi P N.

Hydrogen-induced gas porosity formation in Al-4.5 wt% Cu-1.4 wt% Mg alloy

[J]. J. Mater. Sci., 2013, 48: 5342

[本文引用: 1]

Da Silva C L M, Scotti A.

The influence of double pulse on porosity formation in aluminum GMAW

[J]. J. Mater. Process. Technol., 2006, 171: 366

[本文引用: 1]

Trometer N, Chen B W, Moodispaw M, et al.

Modeling and validation of hydrogen porosity formation in aluminum laser welding

[J]. J. Manuf. Process., 2024, 124: 877

[本文引用: 3]

Wang Z N, Lu X F, Lin X, et al.

Porosity control and properties improvement of Al-Cu alloys via solidification condition optimisation in wire and arc additive manufacturing

[J]. Virtual Phys. Prototy., 2024, 19: e2414408

[本文引用: 3]

Ren S M, Cong F G, Wang J G, et al.

Comparative study of additive manufacturing thin-walled component with Al-Mg-Sc-Zr alloy using different arc modes

[J]. J. Mater. Res. Technol., 2025, 35: 5665

[本文引用: 1]

Li K, Fang X W, Yang J N, et al.

Wire-arc directed energy deposition of high performance heat treatment free Al-6Mg-0.3Sc alloy

[J]. J. Manuf. Process., 2024, 125: 589

[本文引用: 10]

Derekar K S, Addison A, Joshi S S, et al.

Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium

[J]. Inter. J. Adv. Manuf. Technol., 2020, 107: 311

[本文引用: 1]

Hou X R, Zhao L, Ren S B, et al.

Synergistically improving the strength and anisotropy of wire arc additively manufactured Al-Mg-Sc-Zr alloy by regulating heat input

[J]. Addit. Manuf. Front., 2025, 4: 200215

[本文引用: 5]

Yan H T, Xiao G.

Study on hydrogen in aluminum melt

[J]. Alum. Fabri., 2006: 9

[本文引用: 2]

闫红涛, 肖 刚.

铝熔体中的氢的研究

[J]. 铝加工, 2006: 9

[本文引用: 2]

Xu H F, Yang L J, Huang Y M, et al.

Study on the microstructure and properties of additive manufacturing Al-Mg-Sc alloy with CMT-PADV + arc weaving process

[J/OL]. J. Mater. Eng. Perform., (2025-07-07).

[本文引用: 6]

Cui Y P, Guo X P, Xu R Z, et al.

Enhanced strength and ductility in wire-arc directed energy deposited Al-Mg-Sc alloy assisted by interlayer friction stir processing

[J]. Mater. Sci. Eng., 2025, A944: 148856

[本文引用: 5]

He C S, Wei J X, Li Y, et al.

Improvement of microstructure and fatigue performance of wire-arc additive manufactured 4043 aluminum alloy assisted by interlayer friction stir processing

[J]. J. Mater. Sci. Technol., 2023, 133: 183

[本文引用: 1]

Qie M F, Wei J X, He C S.

Microstructure evolution and mechanical properties of wire-arc additive manufactured Al-Zn-Mg-Cu alloy assisted by interlayer friction stir processing

[J]. J. Mater. Res. Technol., 2023, 24: 2891

Wei J X, He C S, Zhao Y, et al.

Evolution of microstructure and properties in 2219 aluminum alloy produced by wire arc additive manufacturing assisted by interlayer friction stir processing

[J]. Mater. Sci. Eng., 2023, A868: 144794

[本文引用: 1]

Wang Z B, Li B C, Chen X, et al.

Comparative study on microstructure and mechanical properties of Ti and Zr micro-alloyed AlMgSc alloy deposits fabricated via wire-arc directed energy deposition

[J]. J. Alloys Compd., 2025, 1034: 181420

[本文引用: 8]

Ren L L, Gu H M, Wang W, et al.

Effect of Sc content on the microstructure and properties of Al-Mg-Sc alloys deposited by wire arc additive manufacturing

[J]. Met. Mater. Int., 2020, 27: 68

[本文引用: 4]

Gao C Y, Xie H, Huang H F, et al.

Effect of trace Sc addition on microstructure, mechanical and stress corrosion cracking properties of Al-Mg alloys fabricated by Wire Arc Additive Manufacturing (WAAM)

[J]. J. Alloys Compd., 2025, 1021: 179575

[本文引用: 2]

Zhou Y B, Qi Z W, Cong B Q, et al.

Influence of in-situ precipitation on corrosion behaviors of wire arc directed energy deposited Al-Mg(-Sc-Zr)

[J]. J. Mater. Sci. Technol. 2025, 228: 172

[本文引用: 7]

Cui Y P, Guo X P, Xue P, et al.

A composite structure of Al-Mg-Sc alloy prepared by wire arc‑directed energy deposition with interlayer friction stir processing

[J]. Acta Metall. Sin. (Eng. Lett.), 2025, 38: 1794

[本文引用: 1]

Zhou Y B, Qi Z W, Cong B Q, et al.

Sc/Zr microalloying on strength-corrosion performance synergy of wire-arc directed energy deposited Al-Mg

[J]. Virtual Phys. Prototy., 2024, 19: e2358981

[本文引用: 3]

Cui J Y, Guo X P, Hao S, et al.

Achieving high strength-ductility properties of wire-arc additive manufactured Al-Mg-Sc aluminum alloy via friction stir processing post-treatment and high temperature aging treatment

[J]. Mater. Lett., 2023, 350: 134913

[本文引用: 3]

Kang H S, Lee J Y, Choi S, et al.

Smart manufacturing: Past research, present findings, and future directions

[J]. Int. J. Precis. Eng. Manuf.-Green Technol., 2016, 3: 111

[本文引用: 1]

Chigilipalli B K, Veeramani A.

A machine learning approach for the prediction of tensile deformation behavior in wire arc additive manufacturing

[J]. Int. J. Interact. Des. Manuf., 2025, 19: 185

[本文引用: 1]

Hinton G E, Osindero S, Teh Y W.

A fast learning algorithm for deep belief nets

[J]. Neural Comput., 2006, 18: 1527

[本文引用: 1]

Yang Q, Gu Y D, Wu D S.

Survey of incremental learning

[A]. Proceedings of the 2019 Chinese Control and Decision Conference (CCDC) [C]. Nanchang: IEEE, 2019: 399

[本文引用: 1]

Wang H, Gao S L, Wang B T, et al.

Recent advances in machine learning-assisted fatigue life prediction of additive manufactured metallic materials: A review

[J]. J. Mater. Sci. Technol., 2024, 198: 111

[本文引用: 1]

Li Y Z, Sun Y F, Han Q L, et al.

Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts

[J]. J. Mater. Process. Technol., 2018, 252: 838

[本文引用: 2]

Ding D H, Yuan L, Huang R, et al.

Corner path optimization strategy for wire arc additive manufacturing of gap-free shapes

[J]. J. Manuf. Process., 2023, 85: 683

[本文引用: 5]

Nguyen L, Buhl J, Bambach M.

Continuous Eulerian tool path strategies for wire-arc additive manufacturing of rib-web structures with machine-learning-based adaptive void filling

[J]. Addit. Manuf., 2020, 35: 101265

[本文引用: 2]

Barrionuevo G O, Sequeira-Almeida P M, Ríos S, et al.

A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing

[J]. Int. J. Adv. Manuf. Technol., 2022, 120: 3123

[本文引用: 1]

Wu Q, Mukherjee T, De A, et al.

Residual stresses in wire-arc additive manufacturing—Hierarchy of influential variables

[J]. Addit. Manuf., 2020, 35: 101355

[本文引用: 5]

Farias F W C, Payao J D C P, Oliveira V H P M E.

Prediction of the interpass temperature of a wire arc additive manufactured wall: FEM simulations and artificial neural network

[J]. Addit. Manuf., 2021, 48: 102387

[本文引用: 2]

Le V T, Nguyen H D, Bui M C, et al.

Rapid and accurate prediction of temperature evolution in wire plus arc additive manufacturing using feedforward neural network

[J]. Manuf. Lett., 2022, 32: 28

[本文引用: 1]

Li Y X, Polden J, Pan Z X, et al.

A defect detection system for wire arc additive manufacturing using incremental learning

[J]. J. Ind. Inf. Integr., 2022, 27: 100291

[本文引用: 6]

Liu Y, Liu Z Z, Zhou G S, et al.

Microstructures and properties of Al-Mg alloys manufactured by WAAM-CMT

[J]. Materials, 2022, 15: 5460

[本文引用: 1]

Fan S L, Yang F, Zhu X N, et al.

Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing

[J]. Plasma Sci. Technol., 2022, 24: 044001

[本文引用: 1]

Oh W J, Lee C M, Kim D H.

Prediction of deposition bead geometry in wire arc additive manufacturing using machine learning

[J]. J. Mater. Res. Technol., 2022, 20: 4283

[本文引用: 1]

Yun P W, Fu H D, Zhang H T, et al.

Rapid design of high-end copper alloy processes combining orthogonal experiments, machine learning, and Pareto analysis

[J]. J. Mater. Res. Technol., 2025, 36: 1005

[本文引用: 1]

Zhao S, Li J S, Wang J, et al.

Closed-loop inverse design of high entropy alloys using symbolic regression-oriented optimization

[J]. Mater. Today, 2025, 88: 263

Su J L, Chen L Q, Van Petegem S, et al.

Additive manufacturing metallurgy guided machine learning design of versatile alloys

[J]. Mater. Today, 2025, 88: 240

[本文引用: 1]

/