金属学报, 2024, 60(6): 789-801 DOI: 10.11900/0412.1961.2022.00297

研究论文

Ni含量对高强度低合金钢淬透性影响的晶体学认识

苏帅1, 韩鹏1,2, 杨善武1, 王华2, 金耀辉2, 尚成嘉,1,2

1 北京科技大学 钢铁共性技术协同创新中心 北京 100083

2 鞍钢集团 海洋装备用金属材料及其应用国家重点实验室 鞍山 114000

Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel

SU Shuai1, HAN Peng1,2, YANG Shanwu1, WANG Hua2, JIN Yaohui2, SHANG Chengjia,1,2

1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

2 State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114000, China

通讯作者: 尚成嘉,cjshang@ustb.edu.cn,主要从事钢铁材料相关研究;

责任编辑: 肖素红

收稿日期: 2022-06-15   修回日期: 2022-08-17  

基金资助: 辽宁省兴辽英才计划项目(XLYC1907186)

Corresponding authors: SHANG Chengjia, professor, Tel:(010)62332428, E-mail:cjshang@ustb.edu.cn

Received: 2022-06-15   Revised: 2022-08-17  

Fund supported: Liaoning Revitalization Talents Program(XLYC1907186)

作者简介 About authors

苏 帅,男,1994年生,博士生

摘要

Ni作为可以同时提高强度和韧性的合金元素被广泛应用于高强度钢的生产中,但是当Ni的质量分数低于5%时,Ni元素的添加对于基体性能的改善不明显。然而对于低碳低合金钢而言,添加Ni会引起淬透性的变化,以及由此带来的协变相变产物的演变是不可忽略的。本工作设计了2种不同Ni含量的高强度低合金钢(0.92Ni钢和2.94Ni钢),通过末端淬火实验和热模拟实验研究了Ni含量对0.92Ni钢和2.94Ni钢淬透性及相变温度的影响,利用SEM和EBSD表征了0.92Ni钢和2.94Ni钢协变相变产物的显微组织和晶体学特征。结果表明,Ni含量的增加可以显著提高2.94Ni钢的淬透性,降低其相变温度。在0.5℃/s的低冷速下,2.94Ni钢的组织为板条贝氏体和少量呈薄膜状弥散分布的马氏体/奥氏体岛(M/A岛),形成以密排面分组(CP分组)为主导的相变模式,大角晶界密度、板条束(block)边界密度和V1/V2变体对含量较高,硬度也较高;而0.92Ni钢的组织为粒状贝氏体和呈粗大块状分布的M/A岛,形成以Bain分组为主导的相变模式,大角晶界密度、block边界密度和变体对含量较低,硬度较低。热力学和动力学分析表明,在0.5℃/s的低冷速下,Ni含量增加显著提高了2.94Ni钢的相变驱动力,转变速率更快;提高了未转变奥氏体中最大C含量的上限,促进了贝氏体的完全转变,减少M/A岛的含量。

关键词: 高强度低合金钢; 淬透性; 贝氏体; 变体; M/A岛

Abstract

A matrix structure with high strength, such as lath martensite/bainite is created via quenching to achieve conventional high-strength low-alloy ultra-heavy plates. Subsequently, this structure is tempered to improve its toughness. However, it is usually impossible to avoid the low cooling rate in the center of the ultra-heavy plates during cooling, causing inhomogeneous microstructure and mechanical properties along the normal direction. Therefore, it is necessary to enhance the hardenability of the alloy. At lower cooling rates, granular bainite/ferrites are formed in the center of the plates with low hardenability. While this leads to the incompletely transformed martensite/austenite islands (M/A islands), which often cause cracks, fewer high angle grain boundaries (HAGBs) are also formed, which can effectively impede crack propagation. Therefore, improving the strength, toughness, and hardenability is crucial for the development of high-strength low-alloy steel. The addition of nickel can improve the hardenability as well as the toughness of the heavy plates. In this study, two high-strength low-alloy steels with different nickel contents are designed. In addition, the effect of nickel content on hardenability and phase transition temperature is tested using end quenching and thermal mechanical simulation testing. The effects of nickel content on the microstructure and crystallographic characteristics of coherent phase-transformed products are characterized using SEM and EBSD. The results reveal that the increased nickel content greatly improves the hardenability and significantly reduces the phase transition temperature. At a low cooling rate of 0.5oC/s, the microstructure of 2.94Ni steel is lath bainite, and the M/A islands are dispersed on a thin film, forming a phase transformation mode with higher HAGB density, block boundary density and V1/V2 variant pair content, and high hardness. This mode is dominated by the close-packed plane group. While the microstructure of 0.92Ni steel is granular bainite and the M/A islands are distributed in coarse blocks, forming a phase transformation mode with lower HAGB density, block boundary density and V1/V2 variant pair content, and significantly low hardness. Moreover, this mode is dominated by the Bain group. Additionally, the results demonstrate that at the cooling rate of 0.5oC/s, as nickel content increases, the driving force of phase transformation is greatly improved to obtain a higher transformation rate than the steel with low nickel content. The maximum carbon content of untransformed austenite is higher, which promotes the complete transformation of bainite and produces fewer M/A islands. Therefore, this research possesses great potential for the composition design and process control of high-strength low-alloy steel.

Keywords: high-strength low-alloy steel; hardenability; bainite; variant pair; martensite/austenite island

PDF (2732KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801 DOI:10.11900/0412.1961.2022.00297

SU Shuai, HAN Peng, YANG Shanwu, WANG Hua, JIN Yaohui, SHANG Chengjia. Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel[J]. Acta Metallurgica Sinica, 2024, 60(6): 789-801 DOI:10.11900/0412.1961.2022.00297

传统的高强度低合金厚板通过淬火获得高强度的基体组织,如板条马氏体/贝氏体组织,随后通过回火提高韧性,实现良好的强韧性配比[1~4];然而,始终无法避免特厚板在冷却过程中心部冷速较低的情况出现,从而导致厚度方向组织和力学性能不均匀,因此需要提高特厚板的淬透性[5~7]。淬透性低的合金钢在较低的冷速下会通过相变形成粒状贝氏体或铁素体组织,一方面导致不完全转变的马氏体/奥氏体岛(M/A岛)生成,这往往引起裂纹起裂;另一方面使有效阻碍裂纹扩展的大角晶界含量较低[8~11]。因此,对先进的高强度低合金钢有2大要求:强韧性和淬透性。

不论相变的条件如何,低碳低合金钢的相变产物与原奥氏体晶粒保持特定的位向关系,所以合金钢的相变产物又被称为协变相变产物[12]。协变相变产物具有复杂的结构,其结构决定了高强度低合金钢的力学性能。提高强韧性和淬透性的实质即是通过对相变热力学和动力学因素的控制,进而对协变相变组织进行调控,既要避免形成M/A组织,也要促使大角晶界的生成[8]。提高大角晶界密度可以起到细化有效晶粒尺寸的作用,大角晶界来源于相邻不同取向变体之间的界面,因而提高强韧性和淬透性的本质是对协变相变组织的控制。吴彬彬等[8,13]的研究表明,以密排面分组(CP分组)为主导的相变,具有更高的大角晶界密度、板条束(block)边界密度、变体1/变体2 (V1/V2)变体对含量,韧性更高;且对于贝氏体而言,硬度随着大角晶界密度的增加而增加,而马氏体的硬度高于贝氏体但是其大角晶界密度却低于贝氏体。M/A岛作为裂纹的起裂因素极易诱发裂纹形成并使其扩展,从而严重损害韧性,并显著提高韧脆转变温度;其含量越少、分布越细小弥散,对韧性越好。因此,提高协变相变组织的性能不能单纯地靠细化、减少M/A岛或改善大角晶界状况,而是必须同时优化M/A岛和大角晶界。

作为能够同时提高强度及韧性的合金元素,Ni被广泛应用于高强度钢的生产中,也被用于提高低碳低合金钢的低温性能[14~16]。但是Morris等[17]的计算显示当Ni含量(质量分数,下同)低于5%时,Ni元素的添加对基体的性能改善不多。尽管绝大部分低碳低合金钢中的Ni含量远低于5%,对通过添加Ni引起bcc基体性质改变从而提高韧性的作用不大,但是通过添加Ni会引起淬透性变化,以及由此而带来的协变相变产物演变是不可忽略的。

本工作系统研究了不同含量Ni在高强度低合金钢中的作用。通过末端淬火实验研究Ni含量对淬透性的影响;通过连续冷却转变实验研究Ni含量对相变温度的影响,并利用扫描电镜(SEM)和电子背散射衍射(EBSD)研究在低冷速下Ni含量对协变相变产物显微组织和晶体学特征的影响,揭示组织转变过程与晶体学特征的联系;同时结合相变热力学和动力学过程分析在低冷速下Ni含量对组织转变过程及产物的影响,揭示Ni对贝氏体完全转变和M/A岛的影响。

1 实验方法

本实验设计了2种C、Si、Mn、Cr、Mo、V、Ti、B等元素含量接近但Ni含量不同的低碳低合金钢,其化学成分如表1所示。首先通过末端淬火实验得到淬透性曲线,端淬实验过程如下:对试样进行900℃保温30 min正火处理,随后加热到850℃保温30 min,试样出炉后立即在端淬实验装置上进行喷水冷却,喷水时间为15 min,接下来沿平行于试样轴线的方向上磨出2个相互平行的平面,磨削深度为0.5 mm,使用HRS-150洛氏硬度仪在2个相互平行的平面上进行平均硬度测试,绘制成淬透性曲线。随后将实验材料加工成直径3 mm、长10 mm的圆柱试样,利用Linseis-L78-RITA热模拟试验机,通过静态连续冷却实验来测定0.92Ni钢和2.94Ni钢的连续冷却转变(CCT)曲线。测定方法为:将试样以50℃/s的速率加热到1000℃,保温15 min,分别以0.5、1、3、5、10、30以及50℃/s的速率冷却到室温,记录冷却过程中的热膨胀曲线。将连续冷却后的试样在热电偶位置垂直轴向剖开,利用HVIS-1000ZDT显微硬度计进行Vickers显微硬度测试,加载1 kg持续15 s,每隔5 μm做5个压痕,测试试样的平均硬度。将试样研磨抛光并经3% (质量分数)硝酸酒精溶液侵蚀后利用Mira3场发射SEM观察显微组织。随后将侵蚀过的试样使用10%HCLO4 + 5%C3H8O3 + 85%C2H5OH (质量分数)的电解液进行电解抛光,用于EBSD检测。EBSD分析采用MIRA 3 LMH FE-SEM,并配备Oxford Symmetry EBSD探测器,加速电压为20 kV,工作距离为16 mm,倾角为70°,步长为0.15 µm。

表1   2种高强度低合金钢的化学成分

Table 1  Chemical compositions of high-strength low-alloy steel (mass fraction / %)

SteelCSi + MnNiCr + MoV + TiBSPFe
0.92Ni0.161.400.921.220.1070.00150.00810.0170Bal.
2.94Ni0.161.412.941.190.1050.00140.00820.0171Bal.

新窗口打开| 下载CSV


2 实验结果

2.1 淬透性曲线

图1为0.92Ni钢和2.94Ni钢的淬透性曲线。可以看出,2.94Ni钢的淬透性曲线位于0.92Ni钢的上方。在距离端淬表面较近的位置,0.92Ni钢和2.94Ni钢的硬度差别不大。但是随着距端淬表面的距离的增加,0.92Ni钢的硬度急剧下降,距端淬表面50 mm时硬度下降趋于平缓,在距端淬表面90 mm处硬度只有31 HRC。与0.92Ni钢相比,2.94Ni钢的硬度变化很小,整条曲线都较为平缓,没有急剧的硬度降低,在距端淬表面90 mm处硬度仍有39 HRC。可见,2.94Ni钢的淬透性明显高于0.92Ni钢。众所周知,随着距端淬表面距离的增加,端淬试样的冷却速率逐渐减小。因此,有必要进行连续冷却实验来测定0.92Ni钢和2.94Ni钢的CCT曲线。

图1

图1   0.92Ni钢和2.94Ni钢的淬透性曲线

Fig.1   Hardenability curves of 0.92Ni steel and 2.94Ni steel


2.2 CCT曲线及硬度

0.92Ni钢和2.94Ni钢在1000℃保温后的CCT曲线如图2所示。可以看出,在不同冷却速率下,2种钢的相变温度差异明显,冷却速率降低时差异更为显著。对于2.94Ni钢,当冷却速率从50℃/s降低到0.5℃/s时,相变起始温度由371℃略微升高到389℃,相变结束温度由314℃升高到355℃,相变温度范围缩小。0.92Ni钢的相变起始温度和相变结束温度均高于2.94Ni钢,其相变温度范围明显较大。当冷却速率从50℃/s降低到0.5℃/s时,相变起始温度明显升高,由410℃升高到483℃,相变结束温度也由354℃升高到430℃。0.92Ni钢和2.94Ni钢在冷却速率分别大于5和3℃/s时主要以马氏体相变为主,马氏体转变开始温度(Ms)分别为410和371℃。可见Ni含量增加可以显著降低相变起始温度。

图2

图2   0.92Ni钢和2.94Ni钢的连续冷却转变(CCT)曲线

Fig.2   Continuous cooling transition (CCT) curves of 0.92Ni steel and 2.94Ni steel (Ms—starting temperature of martensitic transformation, Ts—starting temperature of phase transformation at each cooling rate, Tf—finishing temperature of phase transformation at each cooling rate)


图1中0.92Ni钢和2.94Ni钢的淬透性曲线表现出明显差别,这是因为2者在低冷速下的相变温度有所不同。当冷却速率降低到3℃/s甚至更低时,2.94Ni钢的相变开始温度没有明显的变化。因此,也可以通过相变开始温度的变化来分析淬透性。当冷却速率从50℃/s降低到5℃/s以下时,淬透性低的0.92Ni钢的相变开始温度显著升高,而2.94Ni钢的相变开始温度即使在冷却速率降低到0.5℃/s时也没有变化。

样品在不同冷速下的Vickers硬度和相对于冷却速率为50℃/s时的硬度下降率如图3所示。可以看出,在各冷速下2.94Ni钢的硬度都要高于0.92Ni钢,且随着冷却速率的降低,2种钢的硬度差异越来越大,这与图1中淬透性曲线表现出来的差异一致。当冷却速率小于10℃/s时,0.92Ni钢的硬度下降率曲线开始急剧上升,而2.94Ni钢的硬度变化较小。对于0.92Ni钢,当冷却速率从50℃/s降到0.5℃/s时,硬度降低了24%,也就是说冷却速率为0.5℃/s时的硬度仅有冷却速率为50℃/s时的76%。相比之下,2.94Ni钢在低冷速下的硬度是高冷速下的92%,比0.92Ni钢在低冷速下的硬度高了82 HV。在低冷速下2种钢之间的硬度差异与Ni含量有关,Ni含量会显著影响低冷速下2种样品的相变温度,从而影响相变产物。

图3

图3   0.92Ni钢和2.94Ni钢在不同冷速下的Vickers硬度与硬度下降率

Fig.3   Vickers hardnesses and hardness decrease rates of 0.92Ni steel and 2.94Ni steel at different cooling rates


2.3 显微组织晶体学特征

0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的SEM像和EBSD像如图4所示。由图4a和b可知,2种钢的组织差异明显,0.92Ni钢的显微组织主要以粒状贝氏体为主,而2.94Ni钢则呈现出典型的板条贝氏体组织。此外,在0.92Ni钢中可清晰见到粗大的块状M/A岛,2.94Ni钢中的M/A岛明显细化且呈薄膜状弥散分布。显微组织的差异也很好地说明了2.94Ni钢的淬透性高于0.92Ni钢。图4c和d给出了带有晶界的Kikuchi带质量图(BC图),小角晶界和大角晶界分别用白线(5° < θ < 15°,θ为晶界角度)、黑线(15° ≤ θ ≤ 45°)和黄线(θ > 45°)表示。可以看出,0.92Ni钢的大角晶界很少,且无序、不规则的分布;而2.94Ni钢的大角晶界以平行排列为主,其中夹杂少量的小角晶界,而且大角晶界密度明显高于0.92Ni钢。表2给出了精确的晶界密度统计。0.92Ni钢和2.94Ni钢的大角晶界密度分别为0.48和1.38 μm-1,小角晶界密度分别为0.19和0.22 μm-1。结果表明,2者的差别主要在大角晶界密度。因此,大角晶界对于提高贝氏体组织的硬度具有重要贡献。

图4

图4   0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的SEM像和带有晶界的BC图

Fig.4   SEM images (a, b) and band contrast (BC) (c, d) images with grain boundaries of 0.92Ni steel (a, c) and 2.94Ni steel (b, d) at a cooling rate of 0.5℃/s (M/A—martensite/austenite; G1 and G2: representative grains of two steels; white lines indicate low angle grain boundaries (LAGBs): 5° < θ < 15° (θ—misorientation angle), black lines (15° ≤ θ ≤ 45°) and yellow lines (θ > 45°) indicate high angle grain boundaries (HAGBs))


表2   0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的晶界密度

Table 2  Grain boundary densities of 0.92Ni steel and 2.94Ni steel at a cooling rate of 0.5oC/s (μm-1)

Steel5° < θ < 15°15° ≤ θ ≤ 45°θ > 45°
0.92Ni0.190.050.48
2.94Ni0.220.091.38

新窗口打开| 下载CSV


3 分析讨论

3.1 变体分析:组织可视化与数字化

为了揭示2种钢中大角晶界的来源,对组织进行可视化与数字化分析。将图4c和d中用黑色线标出来的G1、G2晶粒作为0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的代表性晶粒,图56描绘了代表性晶粒的内部结构,图5中不同的颜色代表了不同的取向。通过计算得到G1晶粒的位向关系为119.9°、7.9°和196.1°,G2晶粒的位向关系为122.6°、9.4°和193.7°。从而进一步得出V1变体在理论K-S关系下的取向与实际位向关系下的取向间的取向差角,G1和G2分别为3.6°和2.8°。使用此位向关系绘制了基于K-S关系的理论极图,并与G1和G2晶粒的实验极图相比较,如图5b和d所示。由图可知2者高度一致,表明G1和G2晶粒的变体与原奥氏体晶粒之间保持K-S关系[18,19]

图5

图5   在冷速为0.5℃/s时0.92Ni钢和2.94Ni钢的代表晶粒G1和G2的反极图和极图

Fig.5   Inverse pole figures (a, c) and pole figures (b, d) of the representative grain G1 of 0.92Ni steel (a, b) and representative grain G2 of 2.94Ni steel (c, d) at a cooling rate of 0.5oC/s (Black dots: theoretical pole figure based on K-S relationship; color plots: experimental pole figure)


图6

图6   0.92Ni钢和2.94Ni钢的代表性晶粒G1和G2通过晶界(GB)图、密排面(CP)分组、Bain分组描绘的微观结构

Fig.6   Microstructures of representative grain G1 of 0.92Ni steel (a-c) and representative grain G2 of 2.94Ni steel (d-f) depicted by grain boundary (GB) (a, d), closed-packed plane (CP) group (b, e), and Bain group (c, f)


图6a和d中的晶界(GB)图可以看出,G2晶粒比G1晶粒表现出更高的大角晶界(θ > 45°)密度并且组织更为精细,这与表2中的晶界密度统计结果所一致。一般来说,由单一奥氏体晶粒转变而来的低碳钢有24种变体,可分为4个CP分组和3个Bain分组[20]。先前的研究[14,21,22]表明,当一个Bain分组包含多个CP分组时为Bain分组主导的相变,这种情况下无法形成高密度的大角晶界;而一个CP分组包含多个Bain分组时为CP分组主导的相变,意味着可形成的大角晶界密度比较高。为了更好地揭示相变模式,对G1和G2晶粒进行CP分组和Bain分组的可视化处理,结果如图6b和e及6c和f所示。CP分组图中的红色、黄色、蓝色和绿色分别代表CP1、CP2、CP3和CP4,Bain分组图中的红色、黄色和蓝色分别代表Bain 1、Bain 2和Bain 3。结合GB图和Bain分组图可以发现,属于同一Bain分组的变体之间存在小角晶界,属于不同Bain分组的变体之间存在大角晶界。原奥氏体晶粒G1除了红色的CP1分组变体较少之外,大部分为CP2、CP3和CP4;原奥氏体晶粒G2的4个CP分组比例和分布相对均匀很多。由此可见,G1和G2都由大块的CP分组组成,这种大块的CP分组模式有利于产生由CP分组主导的相变,但是2者的Bain分组截然不同。G1表现出近乎单一Bain分组(Bain 3),它占据了原奥氏体晶粒G1接近3/4的区域, Bain 3分组中包含CP3和CP4分组,占据了G1 1/4区域的Bain 2也包含了CP2和CP4这2个分组,所以G1是Bain分组主导的相变。而G2表现出均匀细小的Bain分组并行排列,在G2被大块CP分组均匀占据的条件下形成了同一CP分组包含多个Bain分组的现象,CP1分组包含Bain 1和Bain 2,CP2分组包含Bain 1和Bain 3,CP3分组包含Bain 1、Bain 2和Bain 3,CP4分组包含Bain 1、Bain 2和Bain 3,所以G2是CP分组主导的相变。因此,与G1相比,G2以CP分组主导的相变形成了更多的大角晶界。2种钢的组织差异与变体选择有关,以Bain分组主导的相变具有更强的变体选择,更难形成不同的变体[23]。显然,0.92Ni钢的变体选择强于2.94Ni钢,难以形成不同的变体。

在奥氏体向马氏体或贝氏体转变的过程中,一般会形成24个变体以保持与原奥氏体近似的K-S关系,变体的选择会影响相变产物的取向、形貌和力学性能[21~26]。因此,有必要对变体进行数字化定量分析,以便阐明在低冷速下Ni含量对变体选择的影响。单一奥氏体的变体选择差异较大,因而需要对整个区域的变体对含量进行计算。选取0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的EBSD表征区域中的6个奥氏体晶粒进行位向关系计算,在此基础上取位向关系平均值,得到0.92Ni钢的平均位向关系为120.4°、8.6°和195.7°,2.94Ni钢的平均位向关系为121.7°、9.3°和194.6°。基于此结果,也能求出V1变体与其他23个变体的角轴对关系和取向差,并且以此计算出整个区域的变体对边界密度,结果分别如表3图7所示。实际的位向关系与标准K-S位向关系有些偏差,这是因为在马氏体或贝氏体转变过程中存在相变应力的调节[20]。在属于Bain 1分组(V1/V4、V8、V11、V13、V16、V21和V24)的变体对中,它们的位向关系与标准K-S位向关系的偏差更大一些。

表3   基于标准K-S和实际位向关系下V1和其他23个变体的取向差及边界类型

Table 3  Misorientation axes and angles between V1 and the other variants calculated from the experimentally determined orientation relationship (actual OR), and the inter-variant boundary characteristics

Variant

Plane parallel

Direction

parallel

Rotation angle/axis from V1

CP

group

Bain

group

Boundary

type

Exact K-S OR0.92Ni steel2.94Ni steel
V1(111) γ //(011) α[1¯01] γ //[1¯1¯1] α--CP1Bain1-
V2[1¯01] γ //[1¯11¯] α60.0°/[111¯]60.360.2Bain 2Block
V3[011¯] γ //[1¯1¯1] α60.0°/[011]59.960.0Bain 3Block
V4[011¯] γ //[1¯11¯] α10.5°/[01¯1¯]5.05.2Bain 1Sub-block
V5[11¯0] γ //[1¯1¯1] α60.0°/[01¯1¯]59.960.0Bain 2Block
V6[11¯0] γ //[1¯11¯] α49.5°/[011]55.254.9Bain 3Block
V7(11¯1) γ //(011) α[101¯] γ //[1¯1¯1] α49.5°/[1¯1¯1]52.351.2CP2Bain 2Packet
V8[101¯] γ //[1¯11¯] α10.5°/[111¯]8.89.9Bain 1Packet
V9[1¯1¯0] γ //[1¯1¯1] α50.5°/[10313]53.152.4Bain 3Packet
V10[1¯1¯0] γ //[1¯11¯] α50.5°/[7¯5¯5]52.051.0Bain 2Packet
V11[011] γ //[1¯1¯1] α14.9°/[13 5 1]12.113.1Bain 1Packet
V12[011] γ //[1¯11¯] α57.2°/[3¯56]57.957.5Bain 3Packet
V13(1¯11) γ //(011) α[01¯1] γ //[1¯1¯1] α14.9°/[513 1]12.113.1CP3Bain 1Packet
V14[01¯1] γ //[1¯11¯] α50.5°/[5¯57¯]52.051.0Bain 3Packet
V15[1¯01¯] γ //[1¯1¯1] α57.2°/[6¯2¯5]57.056.3Bain 2Packet
V16[1¯01¯] γ //[1¯11¯] α20.6°/[1111 6]15.016.2Bain 1Packet
V17[110] γ //[1¯1¯1] α51.7°/[11611]51.851.0Bain 3Packet
V18[110] γ //[1¯11¯] α47.1°/[24 1021]52.451.4Bain 2Packet
V19(111¯) γ //(011) α[1¯10] γ //[1¯1¯1] α50.5°/[3¯ 13 10]53.152.4CP4Bain 3Packet
V20[1¯10] γ //[1¯11¯] α57.2°/[365¯]57.957.5Bain 2Packet
V21[01¯1¯] γ //[1¯1¯1] α20.6°/[301¯]16.718.2Bain 1Packet
V22[01¯1¯] γ //[1¯11¯] α47.1°/[102124]52.451.4Bain 3Packet
V23[101] γ //[1¯1¯1] α57.2°/[2¯5¯6¯]57.056.3Bain 2Packet
V24[101] γ //[1¯11¯] α21.1°/[94¯0]17.118.6Bain 1Packet

新窗口打开| 下载CSV


图7

图7   0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的变体对边界密度

Fig.7   Densities of inter-variant boundaries in 0.92Ni steel and 2.94Ni steel cooled at 0.5oC/s


变体边界进一步分为板条束(block)、亚板条束(sub-block)和块(packet)边界[20],这3种边界密度和硬度结果如表4所示。可以明显看出,2.94Ni钢的block边界密度远高于0.92Ni钢,而其他边界密度差别不大。因此,贝氏体的硬度与block边界密度有关,block边界密度越高则硬度越高,这与前人研究结果[22,23]一致。而block边界属于大角晶界,这也说明2种钢的硬度差异是由大角晶界决定的,即贝氏体的大角晶界密度越高则硬度越高。根据Hall-Petch关系[12,27]可知,硬度与有效晶粒尺寸有关,不仅与原始奥氏体晶粒尺寸有关,还与其复杂的内部组织(packet、block和条(lath))尺寸有关,有效晶粒尺寸越细则硬度越高。由此可推断,具有高密度大角晶界的相变产物有利于硬度的提高。由表3可知,除了V1/V4变体对的边界属于sub-block边界以外,属于同一CP1分组的V1/V2~V6变体对边界都是block边界;而剩余19个变体对边界都是packet边界。从图7可以看出,属于同一CP1分组的V1/V2、V1/V3(&V5)和V1/V6变体对边界密度明显高于其他变体对,尤其是V1/V2变体对,且这些变体对的边界都是block边界。2.94Ni钢的block边界密度明显高于0.92Ni钢,其中以V1/V2变体对贡献最大:2.94Ni钢的V1/V2变体对边界密度远高于0.92Ni钢。此外,2.94Ni钢的V1/V3 (&V5)和V1/V6变体对边界密度也略高于0.92Ni钢。显然,2种钢的block边界密度差异主要归因于V1/V2变体对边界。以往的研究[13,14,20,22]表明,贝氏体转变温度越低,形成的V1/V2变体对越多,以及相变起始温度在Ms附近的连续冷却转变都可以形成更多的V1/V2变体对,这主要与发生相变时的相变驱动力有关,即相变驱动力越大则V1/V2变体对含量越多。

表4   0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的板条束、亚板条束、块边界密度和Vickers硬度

Table 4  Boundary densities of blocks, sub-blocks, and packets; and Vickers hardnesses of 0.92Ni steel and 2.94Ni steel cooled at 0.5oC/s

SteelBoundary density / μm-1Vickers
BlockSub-blockPacket(θ < 15°)

Packet

(θ > 15°)

hardness

HV

0.92Ni0.340.010.020.12325 ± 11
2.94Ni1.130.020.030.25407 ± 5

新窗口打开| 下载CSV


3.2 相变热力学与动力学分析

当冷却温度、冷速条件一致时,Ni含量影响了其相变温度,从而影响了奥氏体转变过程及转变产物,因此有必要研究2种钢在低冷速下的相变热力学和动力学。Ni含量对相变的影响直接表现在降低了相同冷速下的相变温度,因而相变的热力学条件是不同的。通过Thermal-Calc热力学计算软件对相变驱动力进行计算,得到相变驱动力与温度之间的关系,如图8所示。图中黑色线为Ms所对应的相变驱动力,绿色线为冷速为0.5℃/s时的相变开始温度所对应的相变驱动力,括号内为交点坐标。可以看出,Ni含量的增加使相变驱动力随温度变化曲线向下移动,也就是说使任意温度下的相变驱动力降低;但是Ni含量的增加又会降低相变温度,使得相同冷速下开始发生相变时的相变驱动力增加。当冷速为0.5℃/s时,2.94Ni钢开始相变时的相变驱动力为1478 J/mol,而0.92Ni钢为1081 J/mol,此时相变温度对相变驱动力的影响占主导地位。0.92Ni钢和2.94Ni钢的最小马氏体相变驱动力分别为1571和1603 J/mol,因此,马氏体相变的最小相变驱动力与Ni含量大小无关。

图8

图8   0.92Ni钢和2.94Ni钢的相变驱动力(ΔG)与温度的关系

Fig.8   Curves of phase transition driving force (ΔG) versus temperature for 0.92Ni steel and 2.94Ni steel (Black line: phase transition driving force value corresponding to Ms; green line: phase transition driving force value corresponding to the phase transition start temperature when the cooling rate is 0.5oC/s)


相变驱动力越大,形成的V1/V2变体对越多,如果相变驱动力非常大,奥氏体晶粒会在极短的时间内转变为具有大量位错的马氏体组织;如果贝氏体的相变驱动力不那么大,会首先形成先相变的贝氏体,在此基础上再形成新的组织[28]。当冷速为0.5℃/s时,2.94Ni钢的相变起始于Ms附近,相变驱动力远远高于0.92Ni钢,但是又未达到马氏体的最小相变驱动力,因此具有更高V1/V2变体对密度。

利用杠杆定律[29]通过热膨胀曲线可求得转变动力学曲线(转变分数-温度曲线),转变分数(f)可由下式表示:

f=DT-DγDα-Dγ×Q

式中,DT为发生相变时样品的实际膨胀量;Dγ 为fcc结构相的膨胀量;Dα 为bcc结构相的膨胀量;Q为最大转变分数,Q = 1 - fArfAr为残余奥氏体的体积分数,在图4c和d结果中并未观察到明显的残余奥氏体,因此Q近似为1。通过计算得到0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的奥氏体转变动力学曲线如图9所示,2者的曲线均呈典型的S型。在奥氏体转变过程中,随着温度降低,由于过冷度增大,相变驱动力变大(如图8所示),转变速率增加;同时,由于转变速率与C的扩散速率呈正相关,而随着温度的降低,C扩散速率下降,使转变速率降低。奥氏体转变受上述2方面因素影响,动力学曲线呈现S型,转变速率最高点出现于某一中间温度[30]

图9

图9   0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的奥氏体转变分数随温度的变化及使用BiDoseResp函数拟合的曲线

Fig.9   Curves of transformation fraction of austenite vs temperature for 0.92Ni steel and 2.94Ni steel cooled at 0.5oC/s and corresponding fitting curves obtained by BiDoseResp function


将奥氏体转变分数对时间进行微分,得到0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的转变速率曲线,如图10a所示。可见,2者的最快转变速率均出现于转变中段,与图9中的S型曲线相对应。0.92Ni钢的最快转变速率温度高于2.94Ni钢,最快转变速率却比2.94Ni钢小。0.92Ni钢和2.94Ni钢在最快转变速率温度所对应的相变驱动力如图10b所示。由图可知,2.94Ni钢在转变速率最快时的相变驱动力高于0.92Ni钢。由此可见,在慢冷条件下,相变驱动力为控制相变过程的主导因素。

图10

图10   0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的奥氏体转变速率随温度的变化,最快转变速率温度所对应的ΔG

Fig.10   Curves of transformation rate of austenite vs temperature for 0.92Ni steel and 2.94Ni steel cooled at 0.5oC/s (a) and ΔG corresponding to the temperature of the fastest transition rate (b)


3.3 相变过程与组织的关系

在低冷速下,组织转变的时间也比较长,当冷速为0.5℃/s时,0.92Ni钢和2.94Ni钢的相变持续时间分别为106和68 s。因此,相变过程是贝氏体和奥氏体并存的情形,贝氏体与奥氏体的界面逐渐向未转变的奥氏体部分移动。在这个两相并存的相变过程中,C的扩散无疑也是很重要的。徐祖耀和李学敏[31,32]计算了低碳马氏体形成过程中C的扩散所需时间,当奥氏体C含量(质量分数,下同)从0.27%富集至1.04%所需的时间仅为10-4 s数量级(极端情况下为10-7 s)。这意味着即使是C含量为0.27%的马氏体转变,C原子的扩散也跟得上马氏体的形成。实际上,贝氏体在较高温度下形成时,C可以在几分之一秒内从片条内逃逸。在相变过程中,多余的C从贝氏体片条扩散到未转变的奥氏体,下一贝氏体片条就从富C的奥氏体中长出,直至最终不满足奥氏体转变的热力学条件,才停止转变。贝氏体作为不完全转变的相变,在这种情况下未转变的奥氏体愈加富C,在转变后期会形成一定量的残余奥氏体,残余奥氏体在冷却到室温以后又形成M/A岛,如图4a和b所示。M/A岛的形态及含量对性能有重要影响,相对于弥散、细小、薄膜状的M/A岛,块状、粗大的M/A岛对韧性的危害更大。而贝氏体相变的完全转变程度直接影响M/A岛的含量。此时,贝氏体相变过程中未转变奥氏体所能容纳的C含量至关重要,未转变奥氏体的最大C含量越高,则可形成的贝氏体分数越大,贝氏体相变越完全,M/A岛的含量越少。这些影响都可以由T0'曲线控制(T0'为考虑贝氏体的400 J/mol储存能下相同化学成分的奥氏体和铁素体具有相同自由能时的温度),T0'曲线为C浓度函数的温度轨迹,该曲线决定了贝氏体相变停止时奥氏体的组成[33]

研究[33]表明,实际上贝氏体相变在达到T0'曲线时就会停止。可以认为T0'曲线的C浓度即为未转变奥氏体的最大C含量,通过将曲线移至较大的C浓度可以提高贝氏体的生成比例和残余奥氏体的C浓度。因此,有必要计算Ni含量对T0'曲线的影响。通过修正计算自由能的温度参数,将自由能分解为磁性和非磁性项2个分量来解释合金元素对T0 (T0为相同化学成分的奥氏体和铁素体具有相同自由能时的温度)的影响[34]

ΔGγα=ΔGMγα+ΔGNMγα

式中,ΔGγαγα相变自由能的变化,ΔGMγα为磁性项,ΔGNMγα为非磁性项。表5[33]给出了磁性和非磁性项的自由能随温度变化的函数表达式。由于合金元素的单位浓度(x)引起的磁性项温度变化(ΔTM)和非磁性项温度变化(ΔTNM)如表6[34]所示。考虑合金元素对磁性项和非磁性项温度变化的影响后,自由能修正为:

ΔGγαT=ΔGMγαT-xΔTM+
                        ΔGNMγαT-xΔTNM

式中,T为温度,括号内为函数的自变量。因此,通过将ΔGγα设置为0来计算T0

ΔGMγαT0-xΔTM+ΔGNMγαT0-xΔTNM=0

表5   磁性和非磁性项的自由能近似函数表达式[33]

Table 5  Approximate representations of the free energy components for the γα transformation in pure iron[33]

FunctionabTemperature range
ΔGNMγα = a + bT (J·mol-1)-66607900 K > T > 300 K
ΔGNMγα = a + bT (J·mol-1)650-1900 K > T > 620 K
ΔGMγα = a + bT (J·mol-1)00T < 620 K

Note:a—constant, b—coefficient, ΔGMγα—free energy of the magnetic term, ΔGNMγα—free energy of the non-magnetic term, T—temperature

新窗口打开| 下载CSV


表5中列出的函数表达式代入 式(4):

aNM+bNMT0Fe+aM+bMT0Fe=0
aNM+bNMT0FeX-xΔTNM+aM+bMT0FeX-xΔTM=0

式(5)为纯Fe计算式, 式(6)为添加合金元素后的计算式。aNM为非磁性项函数表达式中与温度有关的常数,bNM为非磁性项函数表达式中与温度有关的系数,T0Fe为纯Fe的T0aM为磁性项函数表达式中与温度有关的常数,bM为磁性项函数表达式中与温度有关的系数,T0FeX为添加合金元素X后的T0。因此,由添加合金元素引起的T0变化(ΔT0)由这2个方程式之间的差异给出:

ΔT0=x(bNMΔTNM+bMΔTM)bNM+bM

多种合金元素的影响可以通过求和相加来得到:

ΔT0=ixi(bNMΔTNMi+bMΔTMi)bNM+bM

为了计算T0'的变化,将ΔGγα设置为储存能量的值(例如贝氏体为400 J/mol)而不是0。合金的实际T0'曲线不仅仅是相对于纯Fe偏移ΔT0 ' (由添加合金元素引起的T0'变化),可以通过具有400 J/mol储存能的Fe-C合金来估算:

T0'970-80xC

式中,xC为C的质量分数。

表6   合金元素引起的磁性项温度变化(ΔTM)和非磁性项温度变化(ΔTNM)[34]

Table 6  Values of ΔTM and ΔTNM for a variety of substitutional solutes[34]

Alloying elementΔTM / (K·%-1)ΔTNM / (K·%-1)
Si-30
Mn-37.5-39.5
Ni-6-18
Mo-26-17
Cr-19-18
V-44-32

Note:ΔTM—temperature change due to a unit concentration (x) of substitutional solute in the magnetic term, ΔTNM—temperature change due to x of substitutional solute in the non-magnetic term

新窗口打开| 下载CSV


使用方程 式(8)可以求出0.92Ni钢和2.94Ni钢的ΔT0分别为-82和-122 K。因此,对于0.92Ni钢和2.94Ni钢,方程(9)可以修改为:

T0'970-80xC-82
T0'970-80xC-122

可见,在任一C含量下,0.92Ni钢的T0'温度都高于2.94Ni钢;在任一T0'温度下,0.92Ni钢的C含量都高于2.94Ni钢。因此,Ni含量的增加使T0'曲线下移。

利用Bhadeshia[35]开发的钢铁材料固态相变热力学和动力学软件MUCG83计算0.92Ni钢和2.94Ni钢的T0'曲线,结果如图11所示。可以更直观地看出,C含量随着温度的降低而增加,0.92Ni钢的T0'曲线位于2.94Ni钢的上方,与计算得到的结果一致。虽然Ni含量增加使T0'曲线下移,导致相同温度下C含量的降低,不利于贝氏体的完全转变;但是Ni含量增加也降低了低冷速下的相变温度,从而使C含量增加,促进贝氏体的完全转变。因此在连续冷却条件下,Ni含量对T0'曲线和相变温度的共同影响使得0.92Ni钢和2.94Ni钢与各自的T0'曲线交于哪一点无法确定,从而无法确定在相变结束时哪一试样的未转变奥氏体中C含量更高。此时可以通过奥氏体转变动力学曲线和T0'曲线建立奥氏体转变分数和C含量的函数关系,进而研究奥氏体转变过程中未转变奥氏体的最大C含量。

图11

图11   0.92Ni钢和2.94Ni钢的T0'曲线及使用BiDoseResp函数拟合的曲线(T0'为考虑贝氏体的400 J/mol储存能下相同化学成分的奥氏体和铁素体具有相同自由能时的温度)

Fig.11   T0' curves of 0.92Ni steel and 2.94Ni steel and corresponding fitting curves obtained by BiDoseResp function (T0'—equilibrium transformation temperature in stored energy of bainite)


使用BiDoseResp函数对图9中0.92Ni钢和2.94Ni钢的奥氏体转变动力学曲线进行拟合,得到奥氏体转变动力学曲线的函数表达 式(12)和(13),2者的拟合优度(R2)分别为0.99998和0.99971。通过得到的函数表达式做出0.92Ni钢和2.94Ni钢拟合的奥氏体转变动力学曲线,结果如图9中虚线所示。

f0.92Ni=0.122+1.151×0.7591+10-0.039454.337-T-
0.151×0.7591+100.041490.949-T
f2.94Ni=0.019+0.683×0.9771+10-0.082372.712-T+
0.317×0.9771+10-0.021355.789-T

式中,f0.92Nif2.94Ni分别为0.92Ni钢和2.94Ni钢的奥氏体转变分数。同样使用BiDoseResp函数对图11中0.92Ni钢和2.94Ni钢的T0'曲线进行拟合,得到T0'曲线的函数表达 式(14)和(15),2者的R2分别为0.99991和0.99997。通过得到的函数表达式做出0.92Ni钢和2.94Ni钢拟合的T0'曲线,结果如图11中虚线所示。

T0 (0.92Ni)'=-876.230+0.680×1600.8171+10-59.1210.088-xC+
0.320×1600.8171+10-30.0150.028-xC
T0 (2.94Ni)'=31.102+0.308×634.8051+10-55.6750.066-xC+
0.692×634.8051+10-35.8820.025-xC

式中,T0 (0.92Ni)'T0 (2.94Ni)'分别为对应0.92Ni钢和2.94Ni钢的T0'温度。由图911可以看出,拟合曲线和实际曲线高度吻合。分别将 式(14)代入 式(12)、 式(15)代入 式(13),得到0.92Ni钢和2.94Ni钢的奥氏体转变分数和未转变奥氏体的最大C含量的函数关系并做出曲线,结果如图12所示。可见,2.94Ni钢的曲线在0.92Ni钢的上方,说明在任一奥氏体转变分数下,2.94Ni钢的未转变奥氏体的最大C含量都高于0.92Ni钢。Ni含量的增加,可以使低冷速下的相变过程中未转变奥氏体的最大C含量更高。在基体C含量相同的前提下,0.92Ni钢相变结束时,由于相同转变分数下2.94Ni钢的未转变奥氏体的最大C含量高于0.92Ni钢,所以2.94Ni钢可以继续发生相变。因此,在低冷速下,2.94Ni钢的奥氏体转变分数势必大于0.92Ni钢,残余奥氏体含量更少,室温下M/A岛的含量更低。即Ni含量的增加不仅使M/A岛明显细化呈薄膜状弥散分布,并且促进低冷速下贝氏体的完全转变,减少M/A岛的含量。

图12

图12   0.92Ni钢和2.94Ni钢未转变奥氏体的最大C含量随奥氏体转变分数的变化

Fig.12   Curves of maximum carbon composition of untransformed austenite vs austenite transformation fraction for 0.92Ni steel and 2.94Ni steel cooled at 0.5oC/s


4 结论

(1) Ni含量从0.92%提高到2.94%可以大幅提高高强度低合金钢的淬透性,使淬透性曲线保持平缓。降低了相同冷速下的相变开始温度和结束温度,使2.94Ni钢在0.5℃/s的低冷速下获得板条贝氏体组织和薄膜状M/A岛,从而使钢在低冷速下仍保持较高的硬度;而0.92Ni钢在0.5℃/s的低冷速下获得粒状贝氏体组织和块状M/A岛,具有较低的硬度。

(2) Ni含量的增加使得相变驱动力随温度变化曲线向下移动,使任意温度下的相变驱动力降低;但是Ni含量的增加又会降低相变温度,使相同冷速下开始相变时的相变驱动力增加。在0.5℃/s的低冷速下,2.94Ni钢的相变驱动力更大,此时相变温度对相变驱动力的影响占主导地位。2种钢的奥氏体转变动力学曲线呈现典型的S型,2.94Ni钢最快转变速率更大,最快转变速率对应温度更低、相变驱动力更大。

(3) 在0.5℃/s的低冷速下,2.94Ni钢相变驱动力更大但未达到马氏体的最小相变驱动力,形成以CP分组为主导的相变模式,变体选择更弱,因此具有更高的大角晶界密度、block边界密度和V1/V2变体对密度;而0.92Ni钢相变驱动力较小,形成以Bain分组为主导的相变模式,变体选择更强,具有较低的大角晶界密度、block边界密度和V1/V2变体对密度。

(4) Ni含量的增加使得T0'曲线向下移动,相同温度下C含量降低,不利于贝氏体的完全转变;但是Ni含量增加也降低了低冷速下的相变温度,从而使C含量增加,促进贝氏体的完全转变。在0.5℃/s的低冷速下,Ni含量的增加不仅使M/A岛细化呈薄膜状,而且使相变过程中未转变奥氏体的最大C含量更高,促进贝氏体的完全转变,减少M/A岛的含量。

参考文献

Xie Z J, Fang Y P, Han G, et al.

Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering

[J]. Mater. Sci. Eng., 2014, A618: 112

[本文引用: 1]

Yu Y S, Hu B, Gao M L, et al.

Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel

[J]. Int. J. Miner. Metall. Mater., 2021, 28: 816

Capdevila C, García-Mateo C, Chao J, et al.

Advanced vanadium alloyed steel for heavy product applications

[J]. Mater. Sci. Technol., 2009, 25: 1383

An F C, Zhao S X, Xue X K, et al.

Incompleteness of bainite transformation in quenched and tempered steel under continuous cooling conditions

[J]. J. Mater. Res. Technol., 2020, 9: 8985

[本文引用: 1]

Pan T, Wang X Y, Su H, et al.

Effect of alloying element Al on hardenabilitity and mechanical properties of micro-B treated ultra-heavy plate steels

[J]. Acta Metall. Sin., 2014, 50: 431

DOI      [本文引用: 1]

Utilizing Jominy end quenching test, chemical phase analysis and thermo-dynamical calculation, study of the effect of alloying elements on hardenability and mechanical properties of a B-bearing ultra-heavy plate steel was carried out. The results showed that small amount of Ti addition could form TiN for its much higher bonding ability than B, fixing N element and thus making B free. Normal Al content failed to prevent BN from precipitating due to the weaker competition for N than B. However, when Al content was increased as high as 0.07%, the competition of Al for N was distinctly improved, making solid-solution B increased. For proper chemical combination of B and N-fixing element, hardenability was increased and accordingly both microstructure and mechanical properties were improved so that the quantity and size of martensite/austenite (M/A) islands and granular bainite were decreased markedly, and low-temperature impact toughness and tensile properties were improved by a large degree. The calculation was in a good accord with experimental results.

潘 涛, 王小勇, 苏 航 .

合金元素Al对微B处理特厚钢板淬透性及力学性能的影响

[J]. 金属学报, 2014, 50: 431

[本文引用: 1]

Zhou T, Yu H, Wang S Y.

Microstructural characterization and mechanical properties across thickness of ultra-heavy steel plate

[J]. Steel Res. Int., 2017, 88: 1700132

Al Hajeri K F, Garcia C I, Hua M J, et al.

Particle-stimulated nucleation of ferrite in heavy steel sections

[J]. ISIJ Int., 2006, 46: 1233

[本文引用: 1]

Wu B B.

Study on crystallographic characteristics of high strength low alloy steel and its composition-process-performance relationship

[D]. Beijing: University of Science and Technology Beijing, 2020

[本文引用: 3]

吴彬彬.

高强度低合金钢晶体学特征及其成分-工艺-性能关系研究

[D]. 北京: 北京科技大学, 2020

[本文引用: 3]

Li W, Cao R, Zhu W C, et al.

Microstructure evolution and impact toughness variation for high strength steel multi-pass weld metals with various cooling rates

[J]. J. Manuf. Processes, 2021, 65: 245

Wang X L, Wang Z Q, Dong L L, et al.

New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection

[J]. Mater. Sci. Eng., 2017, A704: 448

[本文引用: 1]

Wang X L, Ma X P, Wang Z Q, et al.

Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel

[J]. Mater. Charact., 2019, 149: 26

DOI      [本文引用: 1]

The carbon is one of the basic alloying solutes in steels. In the present study, the newly carbon microalloyed X80 steel was designed for the next generation of pipeline and the carbon microalloying effect of base material on the crystallographic structure of coarse grained heat affected zone (CGHAZ) of X80 girth welded joints was systematically investigated using electron back-scattering diffraction (EBSD), considering the fact that crystallography is the most intrinsic aspect in evaluating the microstructure. The results indicated a remarkable variation in the density of high angle grain boundaries and their dispersion by increasing the carbon content of 0.03wt%. It was attributed to the differential shearing mechanism, which was primarily sheared by variant pairing of V1/V2 at 0.06 wt% carbon, whereas at lower 0.03wt% carbon, V1/V4 pairing mechanism dominated the transformation. The preferential variant pairing transformation mechanism at differential carbon content therefore generated dissimilarly selected variants. Thus, as the carbon content increased, the variant selection effect upon phase transformation was attenuated by generating more variants from different Bain groups. The variant pair V1/V2 belonging to different Bain groups neighboring in CGHAZ of high carbon steel increased the density of high angle boundary (Sigma 3 boundary). Moreover, the variation in CTOD (crack -tip opening displacement) property of HAZ suggested that it should be primarily correlated to the block size (or density of block boundaries) of CGHAZ.

Guo Z, Lee C S, Morris Jr J W.

On coherent transformations in steel

[J]. Acta Mater., 2004, 52: 5511

[本文引用: 2]

Wu B B, Wang Z Q, Wang X L, et al.

Relationship between high angle grain boundaries and hardness after γα transformation

[J]. Mater. Sci. Technol., 2019, 35: 1803

[本文引用: 2]

Huang S, Yu Y S, Wang Z Q, et al.

Crystallographic insights into the role of nickel on hardenability of wear-resistant steels

[J]. Mater. Lett., 2022, 306: 130961

[本文引用: 3]

Huang G, Wan X L, Wu K M, et al.

Effects of small Ni addition on the microstructure and toughness of coarse-grained heat-affected zone of high-strength low-alloy steel

[J]. Metals, 2018, 8: 718

Liu Z P, Yu Y S, Yang J, et al.

Morphology and crystallography analyses of HSLA steels with hardenability enhanced by tailored C-Ni collocation

[J]. Metals, 2021, 12: 32

[本文引用: 1]

Morris Jr J W, Guo Z, Krenn C R, et al.

The limits of strength and toughness in steel

[J]. ISIJ Int., 2001, 41: 599

[本文引用: 1]

Miyamoto G, Hori R, Poorganji B, et al.

Crystallographic analysis of proeutectoid ferrite/austenite interface and interphase precipitation of vanadium carbide in medium-carbon steel

[J]. Metall. Mater. Trans., 2013, 44A: 3436

[本文引用: 1]

Kawata H, Sakamoto K, Moritani T, et al.

Crystallography of ausformed upper bainite structure in Fe-9Ni-C alloys

[J]. Mater. Sci. Eng., 2006, A438-440: 140

[本文引用: 1]

Takayama N, Miyamoto G, Furuhara T.

Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel

[J]. Acta Mater., 2012, 60: 2387

[本文引用: 4]

Yu Y S, Wang Z Q, Wu B B, et al.

Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition

[J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 755

[本文引用: 3]

Yu Y S, Wang Z Q, Wu B B, et al.

New insight into the hardenability of high strength low alloy steel from the perspective of crystallography

[J]. Mater. Lett., 2021, 292: 129624

[本文引用: 3]

Huang S, Wu B B, Wang Z Q, et al.

EBSD study on the significance of carbon content on hardenability

[J]. Mater. Lett., 2019, 254: 412

DOI      [本文引用: 2]

Two high strength low alloy steels with different carbon content were studied to elucidate the effect of carbon content on hardenability in terms of crystallography. The hardness reduction from 2 to 50 mm distance from the surface in end-quenched steels of 0.09C and 0.12C was 8.0 and 3.2 HRC, respectively, which implied higher hardenability of 0.12C steel than 0.09C. At low cooling rate, the microstructure of 0.09C and 0.12C steel was granular and lath bainite, respectively, and the density of high angle grain boundaries (HAGBs) of 0.12C steel was significantly greater than 0.09C. Carbon improved the hardenability by optimizing the variant selection to increase the density of high angle grain boundary (HAGB). (C) 2019 Elsevier B.V.

Furuhara T, Chiba T, Kaneshita T, et al.

Crystallography and interphase boundary of martensite and bainite in steels

[J]. Metall. Mater. Trans., 2017, 48A: 2739

[本文引用: 2]

Miyamoto G, Iwata N, Takayama N, et al.

Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming

[J]. J. Alloys Compd., 2013, 577 (): S528

Chiba T, Miyamoto G, Furuhara T.

Comparison of variant selection between lenticular and lath martensite transformed from deformed austenite

[J]. ISIJ Int., 2013, 53: 915

[本文引用: 1]

Morris Jr J W, Lee C S, Guo Z.

The nature and consequences of coherent transformations in steel

[J]. ISIJ Int., 2003, 43: 410

[本文引用: 1]

Wu B B, Wang Z Q, Yu Y S, et al.

Thermodynamic basis of twin-related variant pair in high strength low alloy steel

[J]. Scr. Mater., 2019, 170: 43

[本文引用: 1]

Quidort D, Brechet Y J M.

A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels

[J]. ISIJ Int., 2002, 42: 1010

[本文引用: 1]

You Y, Wang X M, Shang C J.

Influence of austenitizing temperature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel

[J]. Acta Metall. Sin., 2012, 48: 1290

DOI      [本文引用: 1]

<p>The effect of austenitizing temperature on the microstructures and -20 ℃ impact toughness of HSLA100 steel was investigated by Gleeble-3500 thermal simulator. Its microstructures were observed by SEM and EBSD, and the relevant transformation kinetics was also analyzed by means of dilatometer. The results show that the microstructure of HSLA100 steel changes gradually from granular to lath bainite with increasing austenitizing temperature. The highest impact toughness of samples was achieved at austenitizing temperature of 1000 ℃, in which martensite-austenite (M/A) islands are finer and dispersed and the density of high angle boundaries is maximum. M/A islands, however, become coarser and this density lowers below 1000 ℃, beyond 1000 ℃, these islands are refined, being accompanied by a dramatic decrease of this density of high angle boundaries. Kinetics analysis indicates that with increasing austenitizing temperature, the transformation start temperature decreases but the transformation rate increases. Both lower start temperature and faster rate would facilitate M/A islands refining. All the transformation occurring in samples might be divided into two stages: bainite and martensite stages. The highest transformed fraction of bainite is achieved in the bainite stage at about 1000 ℃, resulting in the best impact toughness of HSLA100 steel. The&nbsp;crystallographic analysis of the well refined M/A islands at 1000 ℃ and 1300 ℃ shows that major high angle boundaries occur prior at the boundaries between different Bain groups belong to the same crystallographic group set to at austenite boundaries when covariance transformation occurring. When over-increasing austenitizing temperature, the covariance transformation products in coarser austenite grains are dominated by only one Bain group belong to the crystallographic group set, leading to the density of high angle boundaries and thus the impact toughness of HSLA100 steel decreasing.</p>

由 洋, 王学敏, 尚成嘉.

奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响

[J]. 金属学报, 2012, 48: 1290

[本文引用: 1]

Xu Z Y, Li X M.

Diffusion of carbon during the formation of low-carbon martensite

[J]. Acta Metall. Sin., 1983, 19(2): A83

[本文引用: 1]

徐祖耀, 李学敏.

低碳马氏体形成时碳的扩散

[J]. 金属学报, 1983, 19(2): A83

[本文引用: 1]

Xu Z Y, Li X M.

Diffusion of carbon during formation of low-carbon martensite (Continued)

[J]. Acta Metall. Sin., 1983, 19(6): A505

[本文引用: 1]

徐祖耀, 李学敏.

低碳马氏体形成时碳的扩散(续)

[J]. 金属学报, 1983, 19(6): A505

[本文引用: 1]

Aaronson H I, Domian H A, Pound G M.

Thermodynamics of the austenite-proeutectoid ferrite transformation: Fe-C alloys

[J]. Trans. Metall. Soc. AIME, 1966, 236: 753

[本文引用: 5]

Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties [M]. 4th Ed., Oxford: Butterworth-Heinemann, 2017: 425

[本文引用: 4]

Bhadeshia H K D H.

Thermodynamic analysis of isothermal transformation diagrams

[J]. Met. Sci., 1982, 16: 159

[本文引用: 1]

/