金属学报, 2022, 58(6): 792-798 DOI: 10.11900/0412.1961.2021.00001

研究论文

金属Rb纳米溶胶的超声乳化制备及点火特性

郭雨静1,2, 鲍皓明,1, 符浩1,2, 张洪文1, 李文宏3, 蔡伟平1,2

1.中国科学院合肥物质科学研究院 固体物理研究所 合肥 230031

2.中国科学技术大学 研究生院科学岛分院 合肥 230026

3.河北铷铯科技有限公司 承德 063000

Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance

GUO Yujing1,2, BAO Haoming,1, FU Hao1,2, ZHANG Hongwen1, LI Wenhong3, CAI Weiping1,2

1.Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2.Graduate School of Science Island, University of Science and Technology of China, Hefei 230026, China

3.Hebei Rubidium Cesium Technology Co. Ltd., Chengde 063000, China

通讯作者: 鲍皓明,baohm@issp.ac.cn,主要从事金属纳米材料的合成及在环境中的应用研究

收稿日期: 2021-01-05   修回日期: 2021-05-07  

基金资助: 河北省重点研发计划项目(19211002D)

Corresponding authors: BAO Haoming, Tel:(0551)65591837, E-mail:baohm@issp.ac.cn

Received: 2021-01-05   Revised: 2021-05-07  

Fund supported: Key Research and Development Project of Hebei Province(19211002D)

作者简介 About authors

郭雨静,女,1997年生,硕士生

摘要

基于Rb的低熔点特点,提出了固/液转变+超声分散的纳米化策略,即:将熔化的液态Rb置于特定介质(甲苯)中进行超声乳化,进而冷却凝固形成固态纳米颗粒以实现其纳米化。通过这种策略,成功获得了分散在甲苯里的Rb纳米颗粒。这些Rb纳米颗粒呈近球形,平均粒径约为45 nm。金属Rb纳米颗粒的尺寸可通过调节超声功率进行控制。随着超声功率的降低,颗粒的平均粒径增加。当超声功率降至320和240 W时,平均粒径分别增加至55和70 nm。金属Rb纳米颗粒具有良好的点火作用,可实现有机物甲苯在显著低于其着火点的温度下(如120℃)快速引燃(点火时间小于1 s),且随着温度的升高,甲苯的点火时间变短。当温度为250℃时,可在0.25 s内点燃甲苯。本工作不仅为金属Rb的纳米化提供了新的途径,而且还可望为新型含能材料及点火器件的设计提供新思路与依据。

关键词: Rb纳米颗粒; 溶胶; 超声乳化; 点火特性

Abstract

Metallic rubidium (Rb) has great potential in various fields, such as energy, catalysis, and medical treatment. Fragmenting bulk Rb to the nanoscale is essential for its efficient application in these fields. However, as an alkali metal with a high chemical activity, Rb reacts violently with trace water, oxygen, and others; thus, preparing nanosized Rb is challenging. This study proposes a sample solid-liquid transformation and ultrasonic dispersion method to prepare Rb nanoparticles (NPs) utilizing Rb's low melting point. This method uses the ultrasonic emulsification of liquid Rb in a specific liquid (toluene) to form a colloidal Rb solution. Typically prepared Rb NPs are nearly spherical with an average size of approximately 45 nm. Further, the average size increases with a decrease in ultrasonic power. When the ultrasonic power falls to 320 and 240 W, the average NP size rises to 55 and 70 nm, respectively, demonstrating good controllability of the proposed method. Further experiments demonstrated that Rb NPs can ignite toluene at relatively low temperatures (say 120oC) within 1 s. When the temperature is up to 250oC, toluene can be ignited in 0.25 s. This study not only provides a new method for synthesizing Rb NPs but also offers new opportunities for novel energy-containing materials and ignition devices.

Keywords: rubidium nanoparticle; sol; ultrasonic emulsification; ignition performance

PDF (1815KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭雨静, 鲍皓明, 符浩, 张洪文, 李文宏, 蔡伟平. 金属Rb纳米溶胶的超声乳化制备及点火特性[J]. 金属学报, 2022, 58(6): 792-798 DOI:10.11900/0412.1961.2021.00001

GUO Yujing, BAO Haoming, FU Hao, ZHANG Hongwen, LI Wenhong, CAI Weiping. Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance[J]. Acta Metallurgica Sinica, 2022, 58(6): 792-798 DOI:10.11900/0412.1961.2021.00001

Rb是一种化学性质极为活泼的碱金属,能与痕量的H2O、O2等剧烈反应。它的熔点约为38.9℃,在所有金属中仅次于Ga、Cs和Hg。Rb被誉为“可以改变世界的金属”,在能源、催化和医疗等领域有着重要的应用前景[1~4]。而Rb的纳米化是实现其在众多领域中高效应用的一个前提[5],特别在新型高端催化和含能材料等方面。此外,纳米级别的Rb还有望在声、光、电、磁和热等方面具有新的特性[6~11]

然而,由于金属Rb具有十分活泼的化学性质,其纳米颗粒的制备和保存均对环境有着十分严苛的要求,这给Rb的纳米化带来了极大的困难。至今,有关Rb纳米化方法的报道极少,仅有基于金属Rb和乙醚蒸气共同冷凝的制备方法[12~15]。但该制备方法所需设备复杂、操作繁琐、效率低且可控性差。因此简便高效(快速、高产)地实现Rb的纳米化仍是一个挑战性难题。

众所周知,超声波与介质相互作用时,会产生一些独特的效应,如:机械效应、热效应和化学效应等,已被广泛应用于纳米材料的制备中[16~18]。基于Rb的低熔点特点,本工作提出了固/液转变+超声分散的纳米化策略。通过该策略,可批量获取金属Rb的纳米溶胶,这种方法高效、便捷且具有良好的可控性。进一步的研究发现金属Rb纳米颗粒可对有机物甲苯起到快速引燃的作用,可望应用于新型点火器件。

1 实验方法

1.1 Rb纳米溶胶的制备

Rb纳米颗粒的制备采用固/液转变+超声分散的方法,如图1所示。首先,在N2手套箱中(O2和H2O浓度分别小于10 × 10-6和1 × 10-6),切20 g钾块置于200 mL甲苯溶液中,于90℃加热搅拌1.5 h直至钾块的新鲜暴露面不再氧化变色,说明甲苯中的O2和H2O已经被完全除去(步骤I);接着,将装有金属Rb的安瓿瓶在50℃的加热台上加热至金属Rb熔化,迅速切割开安瓿瓶,取10 μL液态金属Rb和10 mL已去除O2和H2O的甲苯共同放入透明样品瓶中,盖好瓶盖,再利用石蜡密封住瓶口(步骤II)。

图1

图1   固/液转变+超声分散法制备Rb纳米溶胶的示意图

Fig.1   Schematic of the rubidium sol preparation via solid/liquid transformation and ultrasonic dispersion


然后,将密封好的样品瓶从手套箱中取出并放置在功率可调的KQ-400DE数控超声波清洗器水池中,于80℃水浴加热。样品瓶中的Rb再次熔化成液态并沉在瓶中的底部,以40 kHz的频率和400 W的功率超声5 min,在此过程中,可以观察到Rb液滴逐渐消失,溶液的颜色从无色变成蓝灰色(步骤III)。最后,将样品瓶从超声池中取出冷却,即获得了甲苯分散的Rb纳米溶胶(步骤IV)。类似地,通过调节超声功率至320 W和240 W,可获得系列胶体溶液。

1.2 表征

在UV-3600紫外-可见-近红外分光光谱仪上进行Rb纳米溶胶的吸收光谱测试,并将纯甲苯的光吸收谱线作为基线。在N2手套箱中,使用移液枪将制备的胶体溶液滴在深度为2 mm、直径为15 mm的玻璃槽内,加热使甲苯溶剂挥发后残留物质形成粉末,用聚酰亚胺胶带密封住粉末样品以隔绝O2和H2O,采用X'Pert X射线衍射仪(XRD)进行物相分析,所使用的X射线为CuKα。将胶体溶液滴在铜网上,干燥后采用JEM-2010透射电子显微镜(TEM)对样品进行微结构的表征。使用TEM上配备的IE250X-Max50能谱仪(EDS)进行元素分析。

1.3 燃烧特性的评估

将陶瓷舟放置于加热台上加热至一定温度(温度由红外测温计测量),取300 μL的金属Rb纳米溶胶滴入陶瓷舟内,利用摄像机记录胶体溶液的着火、燃烧过程。通过Adobe Premiere软件慢速播放并截取特定时间或状态下的照片来研究相关的燃烧行为。

2 实验结果与讨论

通过固/液转变+超声分散法制备出的溶液呈蓝灰色,并且稀释后有明显的Tyndall效应,如图2中插图I和II所示,显示出典型的胶体溶液(溶胶)特征。相应的紫外-可见-近红外光吸收谱表明该溶胶在波长1100 nm处有一很宽的吸收峰(如图2所示),该峰应归因于金属Rb纳米颗粒的表面等离激元共振(SPR)[13,19,20]。相较于Bozlee等[13]的理论计算及实验结果,该峰显示出大幅度的展宽与红移,造成这种现象的原因可能有以下2种:纳米颗粒的粒径较大且尺寸分布范围较宽;由于制备过程中引入少量O2和H2O,产物中含有金属Rb的氧化物或氢氧化物[13]

图2

图2   所制备的Rb溶胶的光学吸收谱、溶胶装在样品瓶中光学照片及稀释10倍后的Tyndall效应

Fig.2   Optical absorption spectrum of the as-prepared sol solution (Inset I shows the optical photograph of the as-prepared sol in sample bottle; inset II shows the Tyndall effect of the sol after it was diluted to one-tenth of the original)


通过观察胶体溶液的颜色(纳米Rb的团聚、氧化均会造成颜色变化),发现在室温下,这样的储存方式保存半个月后,溶胶颜色无明显变化(尽管底部似有沉淀物,但可通过超声重新分散),表明通过这种方法制备、保存的溶胶具有较好的稳定性。若将装有Rb溶胶的蜡封样品瓶再通过真空袋包装,并放置在-18℃的冷冻环境中,则可以存放3个月以上。这说明一个良好的存储方式需要隔绝O2、H2O和保持低的保存温度。

2.1 形貌与结构

所制备的Rb溶胶表征结果如图3所示。XRD分析(图3a)表明所制备的溶胶中的产物有明显的衍射峰,说明了产物具有一定的结晶性。其中,在26.0°、30.7°和42.7°的峰分别对应于RbOH (JCPDS No.00-035-1010)的(011)、(1¯10)和(020)晶面,而位于22.0°、38.7°和45.0°的峰分别对应于金属Rb (JCPDS No.01-089-4192)的(110)、(211)和(220)晶面。由于手套箱中难免含有少量水气(低于1 × 10-6),所以,其中的RbOH应该是在制备XRD样品时Rb颗粒吸水潮解而形成。

图3

图3   所制备的Rb溶胶中产物的表征

Fig.3   Characterization of the products

(a) XRD spectrum (b) TEM image (c) size distribution

(d) EDS result (f—atomic fraction) (e) element mapping of an isolated nanoparticles (NPs)


Rb溶胶中产物的TEM像如图3b所示。可见,所制备的产物为分散良好的近球形颗粒。通过对典型的5张TEM照片中的630个颗粒进行粒径统计分析,结果显示大多颗粒尺寸小于100 nm,平均粒径约为45 nm,如图3c所示。对应的EDS元素分析结果如图3d所示(其中的C和Cu元素来源于承载样品铜网和碳膜),Rb与O元素的原子比约为1∶2。图3e给出了Rb和O元素在纳米颗粒中的分布,2者呈均匀分布,表明Rb纳米颗粒在TEM样品制备过程已发生氧化。总之,采用固/液转变+超声分散的策略,可以很简便地制备Rb纳米颗粒。

2.2 尺寸的可控性

图4为不同超声功率下获得的Rb纳米溶胶的光学吸收谱、产物的TEM像及粒径分布。光学吸收谱分析表明,随着超声功率的降低,所获得的溶胶的SPR峰发生红移,如图4a所示,这可能是由于Rb纳米颗粒粒径增大而引起的。图4a中插图为对应密封在样品瓶中的溶胶。TEM观察(图4b和d)证实随着超声功率的降低,Rb纳米溶胶中产物的形貌无明显改变,仍为近球形的颗粒;但颗粒的平均粒径呈上升趋势,当超声功率降至320和240 W时,平均粒径分别增加至55和70 nm,如图4c和e所示。可见,金属Rb纳米颗粒尺寸可以通过调节超声功率进行控制。

图4

图4   不同超声功率下获得的溶胶的光学吸收谱、溶胶中产物的TEM像及粒径统计

Fig.4   Optical absorption spectra under different ultrasonic powers (Insets show the photos of the corresponding sols) (a), TEM images (b, d) and size distributions (c, e) of sols obtained with ultrasonic powers of 320 W (b, c) and 240 W (d, e)


2.3 Rb纳米溶胶的形成

通过超声处理实现甲苯介质中熔融的Rb液滴的分散、纳米化是不难理解的,其主要原理是利用了超声波的空化作用[21]。超声波在液相介质中传播时存在正负压强的变化,当局部处于负压时,强大的拉应力使液体“撕裂”开来,形成小气泡。小气泡在负压区被拉伸膨胀,在正压区被压缩变小,其体积受超声波的调制交替进行膨胀、压缩并不断吸收能量,整体呈增大趋势,在正压区体积压缩也愈来愈快,当达到一定值后,气泡发生崩灭,并伴随相应的热效应和机械效应等[22~24]。如图5a所示。这种在超声波作用下导致气泡的形成、长大和崩灭的过程即为超声空化现象。

图5

图5   Rb纳米溶胶的形成过程示意图

Fig.5   Schematics of the formation of rubidium sol

(a) ultrasonic cavitation effect

(b) schematic of the formation of rubidium NPs in toluene (I: cavitation bubble collapse induced mutual sputtering of rubidium and toluene at their interface, which produces relatively large liquid rubidium particles; II: smaller rubidium droplets produced via repeated cavitation bubble collapse; III: rubidium droplets reach critical size to form sol)


在本实验的体系中,在超声波作用下,许多小气泡会在甲苯和Rb液滴中形成、长大进而崩灭。气泡崩灭瞬间将产生局部的高压、高热微流,使金属Rb液滴与甲苯溶液在界面处互相溅射,分离出许多较大的金属Rb液滴,并在表面张力的作用下转变为近球形,如图5b中的步骤I所示。随着超声空化过程不断进行,这些分离出来的较大的Rb液滴也会反复在空化效应的作用下形成更小的Rb液滴,并分散在甲苯中,如图5b中的步骤II所示。当小的Rb液滴的表面张力与超声造成的应力达到平衡时,液滴将维持一个稳定的尺寸[25,26]。冷却后,Rb液滴凝固为固态颗粒,形成甲苯分散的金属Rb纳米颗粒溶胶,如图5b中的步骤III所示。由于在固定频率的情况下,一定范围内随着超声波功率增大,空化作用增强[27],所以,最终的金属Rb纳米颗粒尺寸就越小(如图4所示)。

相比金属Rb和乙醚蒸气共同冷凝的制备方法[12,13],这种固/液转变+超声分散的制备方法所需设备相对较少、操作简单、效率高且可控性更好,可以快速、高产地实现金属Rb乃至其他碱金属的纳米化。

3 点火特性

图6展示了将300 μL的甲苯/金属Rb纳米溶胶置于120℃的陶瓷舟中,大约1 s左右,溶胶迅速起火,并剧烈燃烧,在5 s左右熄灭。而纯甲苯在相同条件下不能燃烧。这说明了金属Rb纳米颗粒对可燃有机物甲苯具有自发点火的作用。随着陶瓷舟温度的升高,溶胶起火时间变短,当温度为250℃时,可在0.25 s内点火、引燃,如图7所示,而当温度低于90℃时,则不能引燃。可见,Rb纳米颗粒具有很好的点火特性,在显著低于甲苯燃点(535℃)的温度下,可以实现对甲苯的快速自动引燃。

图6

图6   将300 μL的甲苯/金属Rb纳米溶胶置于120℃的陶瓷舟中不同时间的点火特性

Fig.6   Photos at intervals of 0 s (a), 1.06 s (b), 1.25 s (c), 2.05 s (d), 4.19 s (e), and 4.75 s (f) after 300 μL sol was placed in the ceramic boat at 120oC


图7

图7   金属Rb纳米溶胶在不同温度的点火时间

Fig.7   Ignition time at different temperatures


通过摄像机观察了溶胶在陶瓷舟上燃烧前的液膜变化及起火点的出现位置。图8a是对应于120℃时的情形,溶胶滴入陶瓷舟后会在其表面分散成几个不连续的液膜,对其中一个液膜进行观察发现:液膜由于汽化而迅速收缩,随后留下残留物,进而起火。显然,残留物应该是金属Rb纳米颗粒,它一旦暴露在空气中,便迅速氧化并产生高温,进而点燃汽化的甲苯,如图8b所示。另外,陶瓷舟温度越高,液膜挥发速率越快,Rb纳米颗粒越快被暴露出来,从而起火时间越短。关于Rb纳米溶胶的点火特性及其应用,尚需深入、系统的研究。

图8

图8   在120℃陶瓷舟中的溶胶液膜的形态演变及引燃示意图

Fig.8   Evolution of liquid film morphology in the ceramic boat at 120oC (a) and schematic of the ignition principle (b)


由于N2手套箱的密闭性有限,这种方法制备的纳米Rb颗粒的表面将会不可避免地被氧化,而氧化生成的Rb的氧化物或RbOH的存在会减慢纳米Rb的氧化速率、降低产生的热量,从而会降低Rb颗粒的点火性能。如果能够完全隔绝H2O和O2,将能够制备出点火性能更好的Rb纳米颗粒。

4 结论

依据Rb的低熔点特点和超声的乳化效应,提出并建立了固/液转变+超声分散的Rb的纳米化策略,即通过将熔化的液态Rb置于惰性的甲苯介质中进行超声分散、进而冷却凝固实现了Rb的纳米化,获得了甲苯分散的金属Rb纳米溶胶。Rb纳米颗粒尺寸可通过调节超声功率进行控制。该方法具有良好的可控性,既便捷又高效,适合于批量制备Rb纳米溶胶。同时,这种方法也可用来制备其他低熔点活泼金属的纳米颗粒。由于金属Rb纳米颗粒易于氧化从而形成局部的高温点,它可以对有机物(甲苯等)进行快速的引燃。

参考文献

Tan Y N, Liu Y.

Properties and research progress of rubidium and its compounds

[J]. Chin. J. Nonferrous Met., 2017, 27: 272

DOI      URL     [本文引用: 1]

谭彦妮, 刘 咏.

铷及含铷材料的性能与应用研究进展

[J]. 中国有色金属学报, 2017, 27: 272

[本文引用: 1]

Cui Y J, Liu Y, Yang B.

The design of high precision time reference measurement system based on rubidium disciplined crystal oscillator and double TDC GP2

[J]. Chin. J. Electron Dev., 2017, 40: 1072

崔永俊, 刘 阳, 杨 兵.

基于铷原子钟和双TDC-GP2的高精度时间基准测量系统的设计

[J]. 电子器件, 2017, 40: 1072

Chang S M, Guo Y.

Influences of alkali metal Rb doped Mn as catalyst on catalytic combustion activity of soot particle

[J]. China Adhes., 2017, 26(5): 25

常三毛, 郭 耘.

碱金属Rb掺锰对碳烟颗粒催化燃烧活性的影响

[J]. 中国胶粘剂, 2017, 26(5): 25

Yang Y, Zhang Y, Guo Q, et al.

Effect of extracellular potassium on the activity of distal renal tubule in mice

[J]. J. Shanghai Jiaotong Univ. (Med. Sci.), 2019, 39(9): 85

[本文引用: 1]

杨 阳, 张 娅, 郭 琴 .

细胞外钾对小鼠远端肾小管离子通道活性的影响

[J]. 上海交通大学学报(医学版), 2019, 39(9): 985

[本文引用: 1]

Qian J M, Li X X, Huang H Y.

Properties of nanometer materials and its preparing methods

[J]. New Chem. Mater., 2001, 29(7): 1

[本文引用: 1]

钱军民, 李旭祥, 黄海燕.

纳米材料的性质及其制备方法

[J]. 化工新型材料, 2001, 29(7): 1

[本文引用: 1]

Li X H, Guo S H, Su J, et al.

Efficient raman enhancement in molybdenum disulfide by tuning the interlayer spacing

[J]. ACS Appl. Mater. Interfaces, 2020, 12: 28474

DOI      URL     [本文引用: 1]

Zhu M Y, Chen Q, Tong W J, et al.

Preparation and application of Fe3O4 nanomaterials

[J]. Prog. Chem., 2017, 29: 1366

朱脉勇, 陈 齐, 童文杰 .

四氧化三铁纳米材料的制备与应用

[J]. 化学进展, 2017, 29: 1366

DOI     

近年来磁性Fe<sub>3</sub>O<sub>4</sub>纳米材料因其独特的物理化学性质如量子尺寸效应、表面界面效应、电学特性以及磁学特性等,而引起了广泛的研究,并在诸多领域(如环境、能源)具有潜在应用前景。本文总结了近年来国内外制备Fe<sub>3</sub>O<sub>4</sub>的一些方法,主要包括:沉淀法、热分解法、水热法、微乳液法以及溶胶-凝胶法,同时对各种制备方法的优缺点进行了比较。在应用方面,着眼于Fe<sub>3</sub>O<sub>4</sub>良好的磁响应性,综述了Fe<sub>3</sub>O<sub>4</sub>纳米材料及其复合物作为吸附剂用于去除废水中的金属离子以及有机污染物;系统总结了Fe<sub>3</sub>O<sub>4</sub>在催化中的应用,包括其本身作为催化剂和作为催化剂活性组分(如贵金属纳米粒子、金属氧化物半导体纳米光催化剂、金属有机化合物等)的载体两个方面。另外,本文还介绍了Fe<sub>3</sub>O<sub>4</sub>纳米材料在能源存储(锂离子电池和超级电容器)以及生物医药(肿瘤诊疗、固定化酶和免疫分析)等方面的应用。最后,针对目前Fe<sub>3</sub>O<sub>4</sub>纳米材料在制备中存在的一些问题进行探讨并对今后的研究方向进行了展望。

Yang M Q, Ji Y H, Liang Q, et al.

Preparation, doping modulation and field emission properties of square-shaped GaN nanowires

[J]. Acta Phys. Sin., 2020, 69: 167805

DOI      URL    

杨孟骐, 姬宇航, 梁 琦 .

四方结构GaN纳米线制备、掺杂调控及其场发射性能研究

[J]. 物理学报, 2020, 69: 167805

Sun Q S, Ni C L, Yu Y C, et al.

Design principle of all-inorganic halide perovskite-related nanocrystals

[J]. J. Mater. Chem., 2018, 6C: 12484

Liu H G, Tian R Y, Jiang Y, et al.

On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route

[J]. Electrochim. Acta, 2015, 180: 138

DOI      URL    

Xu X Y, Wang Y L, Wang R, et al.

Creating carbon-oxygen bonds over TiO2 nanofibers for synergistic benefits of visible-light response and charge separation toward photocatalysis

[J]. Adv. Mater. Interfaces, 2017, 4: 1600795

DOI      URL     [本文引用: 1]

Bozlee B, Lian B, Kahn J, et al.

Characterization of alkali-metal sols in diethyl ether. Visible extinction and surface-enhanced Raman spectra

[J]. Chem. Phys. Lett., 1992, 196: 437

DOI      URL     [本文引用: 2]

Bozlee B, Clark S, Marr C, et al.

Characterization and surface-enhanced Raman spectroscopy of alkali metal sols

[J]. J. Raman Spectrosc., 1996, 27: 75

DOI      URL     [本文引用: 4]

Roginsky S, Schalnikoff A.

A new method of production of colloid solutions

[J]. Kolloid Z., 1927, 43: 67

DOI      URL    

Tomaschewsky N.

Concerning the manufacture of colloids from the condensation method of molecular rays

[J]. Kolloid Z., 1931, 54: 79

DOI      URL     [本文引用: 1]

Modarres-Gheisari S M M, Gavagsaz-Ghoachani R, Malaki M, et al.

Ultrasonic nano-emulsification—A review

[J]. Ultrason. Sonochem., 2019, 52: 88

DOI      PMID      [本文引用: 1]

The emulsions with nano-sized dispersed phase is called nanoemulsions having a wide variety of applications ranging from food, dairy, pharmaceutics to paint and oil industries. As one of the high energy consumer methods, ultrasonic emulsification (UE) are being utilized in many processes providing unique benefits and advantages. In the present review, ultrasonic nano-emulsification is critically reviewed and assessed by focusing on the main parameters such pre-emulsion processes, multi-frequency or multi-step irradiations and also surfactant-free parameters. Furthermore, categorizing aposematic data of experimental researches such as frequency, irradiation power and time, oil phase and surfactant concentration and also droplet size and stability duration are analyzed and conceded in tables being beneficial to indicate uncovered fields. It is believed that the UE with optimized parameters and stimulated conditions is a developing method with various advantages.Copyright © 2018 Elsevier B.V. All rights reserved.

Baissac L, Buron C C, Hallez L, et al.

Synthesis of sub-micronic and nanometric PMMA particles via emulsion polymerization assisted by ultrasound: Process flow sheet and characterization

[J]. Ultrason. Sonochem., 2018, 40: 183

DOI      PMID     

PMMA particle synthesis was performed from MMA (methyl methacrylate) and water mixtures, exposed to different ultrasonic systems and frequencies. The sonication sequence was 20kHz→580kHz→858kHz→1138kHz, and the solution was sampled after each irradiation step for polymerization. Effects of sonication parameters (time, power), polymerization method (thermo-initiated or photo-initiated), use of small amounts of surfactant (Triton X-100™ or Tween® 20) and initial MMA quantity were investigated on particle size and synthesis yields. Particle size and size distribution were measured by DLS (Dynamic Light Scattering), and confirmed via SEM (Scanning Electron Microscopy) images. Synthesis yield was calculated using the dry weight method. Particle composition was estimated using FTIR (Fourier Transform Infra-Red) spectroscopy. PMMA (polymethylmethacrylate) monodispersed particles were successfully synthesized, with a possibility of control in the 78-310nm size range. These sized-controlled particles were synthesized with a 7.5-85% synthesis yield (corresponding to 7.5-40g/L particle solid content), depending on operational parameters. Furthermore, a trade-off between particle size and synthesis yield can be proposed: 20kHz→10min waiting time→580kHz→858kHz leading to 90nm particles diameter with 72% yield in less than 40min for the whole sequence. Thus, the synthesis under ultrasound can be found easy to implement and time efficient, ensuring the success of the scale-up approach and opening up industrial applications for this type of polymeric particles.Copyright © 2017 Elsevier B.V. All rights reserved.

Behbahani E S, Ghaedi M, Abbaspour M, et al.

Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques

[J]. Ultrason. Sonochem., 2017, 38: 271

DOI      PMID      [本文引用: 1]

This study is devoted to preparation of novel solid lipid nanoparticles (SLNs) for the encapsulation of curcumin which is produced by micro-emulsion and ultrasonication using stearic acid and tripalmitin as solid lipids, tween80 and span80 as surfactants. The relation between particle size and entrapment efficiency of the produced SLNs was operated by central composite design (CCD) under response likes surface method (RSM). The variables including the ratio of lipids (X), the ratio of surfactants (X), drug/lipid ratio (X), time of sonication (X) and time of homogenization (X). Particle size and entrapment efficiency of the loaded curcumin was justified according to the minimum particle size and maximum entrapment efficiency. The curcumin loaded SLNs presented fairly spherical shape with the mean diameter and entrapment efficiency of 112.0±2.6nm and 98.7±0.3%, respectively. The optimized SLNs were characterized by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS) and field emission scanning electron microscopy (FESEM). The drug release profile of the optimal formulated material was examined in aqueous media and almost 30% of the curcumin loaded in SLNs was gradually released during 48h, which reveals efficient prolonged release of the drug.Copyright © 2017 Elsevier B.V. All rights reserved.

Jia Q P, Ma Z L, Han B, et al.

Effects on SPR of Au/TiO2 by preparation methods

[J]. J. Hebei Univ. (Nat. Sci. Ed.), 2020, 40: 385

[本文引用: 1]

贾群鹏, 马志领, 韩 冰 .

Au/TiO2的制备方法对其SPR的影响

[J]. 河北大学学报(自然科学版), 2020, 40: 385

[本文引用: 1]

Zhu W Z, Liu Y Q, Meng G.

Preparation and characterization of nano-gold particles by seeding method

[J]. Chin. J. Veter. Med., 2019, 55(10): 33

[本文引用: 1]

朱文壮, 刘轶群, 孟 赓.

纳米金颗粒的晶种法制备及表征

[J]. 中国兽医杂志, 2019, 55(10): 33

[本文引用: 1]

Li C X, Wang Z H.

Applications of ultrasound in preparation of nanosized materials

[J]. Chemistry, 2001, 64: 268

[本文引用: 1]

李春喜, 王子镐.

超声技术在纳米材料制备中的应用

[J]. 化学通报, 2001, 64: 268

[本文引用: 1]

Vyas N, Manmi K, Wang Q X, et al.

Which parameters affect biofilm removal with acoustic cavitation? A review

[J]. Ultrasound Med. Biol., 2019, 45: 1044

DOI      URL     [本文引用: 1]

Jiang R P.

Effect rules and function mechanism of ultrasonic field on the solidification of high strength aluminum alloy

[D]. Changsha: Central South University, 2014

蒋日鹏.

超声场对高强铝合金凝固过程的影响规律与作用机理研究

[D]. 长沙: 中南大学, 2014

Ma L.

Mechanism for ultrasonic driving filling of liquid solder and acoustic cavitation

[D]. Harbin: Harbin Institute of Technology, 2015

[本文引用: 1]

马 琳.

液态钎料超声驱动填缝机理及声空化作用研究

[D]. 哈尔滨: 哈尔滨工业大学, 2015

[本文引用: 1]

Sajjadi B, Raman A A A, Shah R S S R E, et al.

Review on applicable breakup/coalescence models in turbulent liquid-liquid flows

[J]. Rev. Chem. Eng., 2013, 29: 131

[本文引用: 1]

Kulawik-Pióro A, Tal-Figiel B.

Influence of preparation method on size distribution of the dispersed phase of primary emulsions

[J]. Chem. Eng. Technol., 2017, 40: 412

DOI      URL     [本文引用: 1]

Li X T, Gao X P, Li T J, et al.

A experimental study of grain refinement by ultrasonic treatment during continuous casting

[J]. Rare Met. Mater. Eng., 2007, 36: 377

[本文引用: 1]

李新涛, 高学鹏, 李廷举 .

连铸过程中超声细晶技术研究

[J]. 稀有金属材料与工程, 2007, 36: 377

[本文引用: 1]

/