金属学报, 2021, 57(11): 1362-1379 DOI: 10.11900/0412.1961.2021.00349

综述

镁合金塑性加工技术发展及应用

潘复生1,2, 蒋斌,1,2

1.重庆大学 国家镁合金材料工程技术研究中心 重庆 400044

2.重庆大学 材料科学与工程学院 重庆 400044

Development and Application of Plastic Processing Technologies of Magnesium Alloys

PAN Fusheng1,2, JIANG Bin,1,2

1.National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China

2.Collegue of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

通讯作者: 蒋 斌,jiangbinrong@cqu.edu.cn,主要从事镁合金材料与制备加工技术研究

收稿日期: 2021-08-23   修回日期: 2021-09-18   网络出版日期: 2021-11-02

基金资助: 国家自然科学基金项目.  U1764253.  51971044.  U1910213.  52001037.  U2037601

Corresponding authors: JIANG BIN, professor, Tel:(023)65102821, E-mail:jiangbinrong@cqu.edu.cn

Received: 2021-08-23   Revised: 2021-09-18   Online: 2021-11-02

作者简介 About authors

潘复生,男,1962年生,教授,博士

摘要

我国是世界上镁资源最为丰富的国家,镁及镁合金具有质轻、比强度高、阻尼减振、电磁屏蔽性能优良、储能特性好等优点,是最有潜力的轻量化材料之一,其推广应用对节能减排和能源转型战略具有重要意义。但镁合金具有密排六方晶体结构,塑性变形能力较差。如何改善镁合金的塑性变形能力是扩大镁合金应用的瓶颈问题之一。本文综述了10多年来,世界各国在改善镁合金塑性、提升镁合金塑性变形能力等方面所做的大量工作,及在镁合金塑性加工技术等方面取得的重要进展。发展了“固溶强化增塑”新型镁合金设计理论和“熔体变温自纯化”等关键制备技术,形成了一批高塑性变形镁合金材料和牌号,其中杂质Fe含量可降到10 × 10-6以下,超高塑性镁合金延伸率可达到60%以上,超高强度(抗拉强度大于550 MPa)镁合金延伸率可以达到10%以上;开发了非对称挤压、非对称轧制、非对称改性、往复循环多道次镦挤开坯技术、扩收控制大比率锻造技术、挤锻复合成形技术等一批镁合金新型塑性加工技术。这些合金和技术使变形镁合金基面织构显著弱化,明显提高了变形镁合金板材、管型材和锻件的塑性成形能力和制品质量,产品成本大幅度降低,在板材、管型材和锻件制备加工中实现了成功应用。

关键词: 镁合金 ; 成形性 ; 塑性加工 ; 非对称加工 ; 应用

Abstract

China has the most abundant magnesium resources in the world. Magnesium and its alloys have the advantages of low density, high specific strength, good damping property, and exceptional electromagnetic-shielding and energy-storage characteristics. They are one of the most promising lightweight materials. The enhanced applications of magnesium alloys can save energy and reduce emissions and are significant to the new Chinese energy strategy. However, magnesium alloys have a hexagonal close-packed structure and exhibit relatively low ductility. A bottleneck in expanding the application of magnesium alloys is improving the ductility of magnesium alloys. For more than ten years, efforts have been made to improve the ductility and plastic deformation ability. Progress has been made in plastic-processing technologies of magnesium alloys. The novel alloy design theory “solid solution strengthening and ductilizing” and advanced preparation technologies such as “melt self-purification through varying temperature” have been established. Series of new magnesium alloys with good ductility and corresponding alloy grades have been developed, where the impurity content of iron can be reduced to below 10 × 10-6; the elongation was more than 60% for ultrahigh plasticity magnesium alloys and is above 10% for the ultrahigh-strength magnesium alloys (UTS > 550 MPa). New plastic-processing technologies, such as asymmetric extrusion, asymmetric rolling, asymmetric modification, cyclical multipass upsetting and squeezing, expansion control large ratio forging, and extrusion and forging composite forming, have been developed. These newly developed magnesium alloys and processing technologies weaken the basal texture in wrought magnesium alloys, improving the formability of sheets, tubes, profiles, and forgings and their product quality and reducing their product cost. These technologies have been successfully applied in the processing of magnesium sheets, pipe profiles, and forgings.

Keywords: magnesium alloy ; formability ; plastic processing ; asymmetric processing ; application

PDF (1543KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

潘复生, 蒋斌. 镁合金塑性加工技术发展及应用. 金属学报[J], 2021, 57(11): 1362-1379 DOI:10.11900/0412.1961.2021.00349

PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys. Acta Metallurgica Sinica[J], 2021, 57(11): 1362-1379 DOI:10.11900/0412.1961.2021.00349

地球上镁矿资源丰富,我国是镁矿储量最为丰富的国家,大力发展与应用镁及镁合金对于缓解铁铝金属矿产资源紧缺难题具有重要意义[1~10]。镁及镁合金具有质轻、比强度高、阻尼减振、电磁屏蔽性能优良、储能特性好等优点,是最有潜力的轻量化材料之一,已在汽车、轨道交通、电子信息、通用工具、航空航天、国防军工等领域得到规模应用,产生了很好的轻量化效果和显著的节能减排效应,展现出广阔的发展与应用前景,在推动碳达峰和碳中和国家战略过程中将起到不可替代的作用[11~20]

镁合金属于密排六方晶体结构,室温可动滑移系少,塑性成形能力较差,因此,相对于铁、铝金属材料的变形制品占比超过70%,变形镁合金在镁合金应用产品种类中的占比较低,目前应用的镁合金产品主要是铸造镁合金[21~26]。变形镁合金在室温或300℃以下塑性成形时柱面和锥面滑移的临界剪切应力比基面滑移大很多,柱面和<c + a>锥面滑移难以启动[27~34]。因此,变形镁合金在室温或300℃以下塑性加工时,形成很强的基面织构,成形性很差,导致其多向变形困难,进一步二次塑性加工难度很大,需要多次加热和退火,从而导致加工工序长,成品率低,综合成本高[35~46]。同时,现有塑性加工主要是采用对称轧制或挤压工艺,在逐渐减薄过程中的基面织构越来越强,使变形镁合金的后续塑性加工成形性能显著恶化。

针对变形镁合金塑性成形能力差的问题,近年来国内外研究者开展了大量工作,在高塑性变形镁合金设计新方法和新理论、塑性加工新技术等方面取得了重要进展,形成了“固溶强化增塑”高塑性变形镁合金设计理论、变形镁合金新型非对称加工技术、往复循环多道次镦挤开坯技术、挤锻复合成形技术等重要成果,为变形镁合金及其塑性加工技术的进一步发展应用提供了重要的科学基础和技术支持。

1 高塑性变形镁合金设计和制备关键技术

1.1 变形镁合金“固溶强化增塑”设计新方法

镁合金是密排六方晶体结构,室温变形时基面和非基面的临界剪切应力(critical resolution shear stress,CRSS)差异很大,纯Mg锥面滑移CRSS比基面大100倍左右,在变形时能开启的滑移系以基面滑移为主。因此,镁合金在塑性变形时常常难以满足von Mises准则,进而表现出较差的塑性和强烈的各向异性。

重庆大学潘复生团队提出了“固溶强化增塑”新型镁合金设计理论[47],该理论可以为高塑性镁合金的设计提供重要理论基础。如图1[41],通过增加基面滑移阻力,同时降低基面滑移和非基面滑移CRSS之间的差异,可以在提高强度的同时,激活更多的滑移系来协调变形,进而实现镁合金强度和塑性同步提升。这些特定元素的选择,可以在计算模拟的基础上通过实验进一步确定,潘复生团队在过去10多年中做了大量计算和验证工作,部分结果如表1[47]所示。图1[47]表1[47]反映了固溶元素对镁基面滑移CRSS的影响规律,Mn、Gd、Y、Ca等元素可以显著增加基面滑移阻力的同时缩小基面和非基面滑移的CRSS差异,有望实现强度和塑性同步提升,从而改善镁合金的塑性变形能力。

图1

图1   镁合金“固溶强化增塑”设计示意图[47]

Fig.1   Solid solution strengthening and ductilizing to design new Mg alloys (Δτ, Δτ'—difference of sliding resistance) (a-h)[47]


表1   固溶元素对Mg基面滑移临界剪切应力(CRSS)的影响[47]

Table 1  Basal CRSS changes of Mg with different solutes[47]

Element

Solubility in Mg

(atomic fraction / %)

ΔτCRSS at the most solubility

MPa

ΔτCRSS at 1% (atomic fraction) solubility / MPa
Gd4.5323.2210.91
Ca0.416.8510.71
Yb1.211.1510.18
Mn0.99610.1310.15
Y3.416.719.06
Dy4.8318.898.6
Er6.919.057.25
Si1.164.754.41
Ag3.838.544.37
Zn2.695.233.19
Sb002.37
Al11.57.082.09
Sc156.111.58
Ti0.120.491.41
Sn3.352.341.28
Li174.81.17
Zr1.0410.98
Fe0.000430.24-

Note: CRSS—critical resolution shear stress, ΔτCRSS—the addition of basal plane sliding CRSS after the solution of element into Mg

新窗口打开| 下载CSV


在Mg-Mn系镁合金方面,挤压成形的Mg-Mn二元合金具有优良的综合力学性能,其抗拉强度、屈服强度和断裂延伸率分别为248 MPa、213 MPa、29.9%,远高于同等条件下纯Mg的力学性能[48],这表明Mn元素添加可以起到显著的固溶强化增塑作用。在Mg-Mn中添加Nd元素[49],可使该合金的多滑移系的临界剪切应力趋于一致,变形过程中锥面<c + a>滑移可以协调变形,从而使Mg-Mn-Nd合金呈现出各向同性和高塑性的特征。在Mg-Mn中添加Ce元素[50],可使合金具备较细小的再结晶晶粒和较弱的基面织构,获得较优的综合力学性能。在Mg-Zn系合金中添加Mn元素合金化,形成的Mg-Zn-Mn[51]、Mg-Zn-Mn-Ca/Sr[52,53],经常规挤压成形后,其平均晶粒尺寸可细化至约1 μm,室温强度达300 MPa以上,延伸率近20%。

潘复生团队发展了超高塑性VK21和VK41等Mg-Gd-Zr合金[54,55],由于Gd元素的固溶强化增塑作用,该合金室温延伸率可达60%以上。进一步发展的Mg-Gd-Mn合金[56]仍然具有优良的综合力学性能,抗拉强度在200 MPa以上,室温伸长率在20%以上,甚至可以达到30%以上。

将Ca和Ce等微量元素添加至常用AZ31镁合金中,也可以起到较好的固溶强化增塑作用。通过Ca/Ce微合金化发展的Mg-3Al-1Zn-0.2Ce-0.2Ca合金[57]轧制薄板具有较弱基面织构,塑性应变比(r)为1.05,薄板的平面各项异度(Δr)为0.04,其室温杯突值(IE)达到6.0 mm,Mg-1.5Zn-0.2Ca-0.2Ce合金[58]轧制薄板的室温断裂延伸率达到42.1%,室温杯突值达到7.7 mm。

在“固溶强化增塑”设计理论指导下,重庆大学以及相关单位发展了含Mn、Gd、Y、Ca、Ce等多种新型高塑性镁合金,形成了高塑性超高强变形镁合金、超高塑性镁合金、低成本高塑性镁合金等系列新型变形镁合金,其中16个已批准为国家标准牌号合金,9个已批准为国际标准牌号合金。

1.2 提高变形镁合金塑性加工能力的材料制备新技术

常规镁合金的塑性加工能力相对较弱,影响因素众多,除了镁合金成分以外,纯净度、晶粒尺寸、组织均匀性等冶金质量对变形镁合金锭坯塑性加工能力和制品综合性能有决定性作用。

1.2.1 熔体纯净化

变形镁合金锭坯的纯净度决定于合金熔体的纯净化处理。镁合金由于化学性质活泼,熔炼过程中易氧化形成MgO等夹杂,在一定程度上恶化变形镁合金的塑性加工性能。10多年来,去除MgO夹杂的工艺研究取得较大进展。在添加熔剂净化方面,通过改变镁熔体与夹杂之间的界面张力,使夹杂上浮或沉降,具有较好的净化效果[59],但容易引入熔剂污染。在浇铸时加入过滤装置采用机械拦截,也可实现熔体纯净化[60]。采用MgO泡沫陶瓷或铁丝网过滤镁合金熔体,可以起到较好的净化效果。该方法采用正向重力过滤净化工艺,是目前广泛应用的非熔剂净化方法,简单易行,但其有效工作寿命大多在30 min左右,无法高效连续工作,在大容量熔体连续浇注过程中极易发生夹杂物堵塞而失效。

潘复生团队创新发展了“反重力方向过滤技术”,开发了多级逆向反重力过滤工艺与装置,随着加料和浇铸的持续进行,熔体实现逆向反重力流动,过滤介质寿命成倍提升[61]。在此过程中氧化物夹杂被阻挡在过滤板下方,沉降聚集在坩埚底部,经多级连续过滤,浇注出口处的熔体夹杂物含量大幅度降低,且过滤板不会被堵塞。因此,该新型过滤技术能实现高效连续过滤,显著提升镁合金熔体质量,已在镁合金汽车零部件压铸、镁合金航空航天构件铸造、变形镁合金锭坯制备等方面得到大规模应用。

镁及镁合金在原镁制备和合金化熔炼过程中,含铁镁矿和铁制工具使大多数镁合金的初始Fe含量比较高。Fe在Mg中固溶度很低且与Mg的电极电位差异很大,导致镁合金制品的Fe与Mg基体极易形成微电偶而恶化其耐蚀性能。同时,Fe的存在对镁合金的力学性能也存在有害影响。为了改善镁合金的耐蚀和力学性能,除铁就显得非常必要。传统除铁工艺主要是熔剂法,具有一定效果,但容易带来熔剂污染。潘复生团队基于杂质Fe在镁熔体中热动力学特性,开发了“熔体变温自纯化工艺”,实现了熔剂纯化向无熔剂纯化的转变[62]。通过热力学和动力学平衡调控杂质Fe在镁熔体中的溶解度变化,利用熔体变温处理实现杂质Fe在液相中定向迁移和有效沉降,从而实现镁合金熔体的深度纯化。变温处理后,AZ31、AZ61和ZK60等变形镁合金的杂质Fe含量分别降低至15 × 10-6、10 × 10-6和5 × 10-6以下,其中ZK60合金的Fe含量是迄今公开报道的镁合金最低杂质Fe含量,同时Si等杂质含量也大幅度减少[63]。另外,此处理工艺对新型Mg-Gd-Y-Zn-Zr稀土变形镁合金也有很好的纯化效果,杂质Fe含量可降低至10 × 10-6,变形镁合金的冶金质量大幅度提升,其耐蚀性能大幅度改善[64,65]

1.2.2 铸锭坯晶粒细化

变形镁合金铸造锭坯的凝固晶粒尺寸直接影响塑性加工性能,细化凝固组织晶粒尺寸非常重要。铸态晶粒细化不仅可以减少变形镁合金锭坯的成分偏析、气孔、疏松等铸造缺陷,还可以通过改善柱状晶组织及改善金属化合物的分布和尺寸,来改善变形镁合金锭坯塑性成形性。近年来,镁合金铸锭坯的凝固组织晶粒细化方法主要包括微合金化、快速冷却法、附加振动法、电磁和超声波搅拌、变质处理、半固态成形等。多种工艺或方法的复合可以实现更好的晶粒细化处理效果。

在微合金化细化晶粒方面,变形镁合金主要添加Ca、Ce、Y或Sr等微合金元素,这些元素除了抑制晶粒生长作用外[66],还与Mg基体或添加元素之间形成高熔点化合物,如果这些化合物与Mg基体之间具有较好的晶体学匹配,也能够产生较好的异质形核和钉扎晶界作用,从而实现铸锭坯晶粒细化。

采用电磁和超声波搅拌处理,可显著细化变形镁合金铸锭坯铸态晶粒。通过电磁力或超声空化,破碎了在镁合金凝固过程中形成的树枝晶,阻碍镁合金晶粒长大,从而细化晶粒。

在镁合金中原位生成或加入高熔点金属化合物,促进凝固非均匀形核,可细化铸态晶粒。Ali等[67]、Kelly等[68]和Zhang等[69]发展了边-边匹配模型,为高效变质剂的设计与发展打下了很好的基础,发展了一批镁合金晶粒细化剂和晶粒细化镁合金。例如,Mg-Al系变形镁合金可以适当加入Al-Ti-B晶粒细化剂[70],Mg-Zn系变形镁合金一般加入Mg-Zr中间合金晶粒细化剂[71],Mg-Y系变形镁合金中加入Al2Y[72]或AlN颗粒[73],铸态晶粒尺寸可以降低80%~90%,从而产生良好的变质处理效果。

1.2.3 锭坯组织均匀化

变形镁合金铸锭组织,特别是高合金化变形镁合金锭坯,易形成成分偏析和低熔点化合物,不仅降低铸锭的塑性,使随后挤压、轧制和锻造等热加工更加困难,而且还具有较强的组织遗传性,使其塑性加工制品的强度和塑性下降,各向异性和腐蚀敏感性增加。近年来,在均匀化工艺改进,特别是低熔点相溶解扩散等的研究工作方面取得了重要进展[74~76],有效降低了成分偏析导致的有害影响,消除低熔点相在塑性加工过程中的过烧导致的热裂等缺陷,从而改善了铸锭组织均匀性和塑性加工性能。潘复生团队发明了阶梯固溶处理高合金化变形镁合金铸锭坯的新型工艺[77],使铸锭坯组织和成分均匀性很好地满足后续塑性加工要求。

2 变形镁合金的新型非对称挤压技术

挤压板材和管型材是变形镁合金的主要产品形式[78~86]。钢铁和铝合金变形产品一般采用对称加工,温度场和应力场越均匀,产品的性能越好。镁合金传统挤压工艺也采用对称加工,但在挤压过程中发现镁合金易形成强基面织构,板型材的持续塑性成形难度加大,导致板型材挤压效率不高、成品率低、成本极高,二次塑性成形也受到很大抑制。为了突破传统工艺限制,重庆大学潘复生团队发展了一系列镁合金新型非对称加工技术,镁合金塑性成形性显著改善,成果已在部分产品上工业化应用。新型非对称挤压工艺主要包括模具结构非对称和挤压坯料非对称2种。

2.1 镁合金板材非对称挤压

在镁合金板材非对称挤压加工时,利用挤压模具或非均匀温度场等,构建非对称应力应变,促进非基面取向晶粒再结晶生长和抑制基面取向晶粒生长,从而弱化镁合金基面织构,改善塑性成形能力。等通道挤压(ECAP)曾经是镁合金中研究最多的非对称加工技术,当坯料流经通道拐角时,拐角内外侧材料流速存在明显差异而发生非均匀变形,形成非对称应力应变,从而使挤压板材基面织构显著弱化,同时能够起到细化晶粒的效果[87~93]。Suh等[94]采用等通道挤压弱化AZ31镁合金板材的基面织构,织构强度由初始轧制板材的9.5减小至6.5,平均晶粒尺寸由15 μm降至8 μm。与常规轧制AZ31镁合金板材相比,等通道挤压板材在室温U型拉深实验中的成形性能提高了50%。不过,等通道挤压制备镁合金板材只能用于小尺寸特殊镁合金板材制备,无法用于工业连续生产。

为了实现镁合金非对称加工技术的大规模应用,潘复生团队发展了可工业化连续加工的镁合金板材新型非对称挤压[95~102],在传统挤压模具的基础上改变模腔结构,设计和加工了多种新型非对称挤压模具,使材料在挤压过程中产生流速差,从而产生较大的剪切变形。与传统挤压相比,新型非对称挤压的AZ31镁合金板材基面织构显著弱化[95~98]。传统挤压、阶梯式非对称挤压和渐进式非对称挤压板材的(0002)基面织构强度分别为22.6、18.5和15.6[95,97,98]

Xu等[99,100]设计了具有单侧模角的非对称挤压模具,通过改变单侧模角(α)研究挤压过程中非对称变形程度对AZ31镁合金板材织构的影响。当α为45°时,挤压过程中板材厚度方向上的等效应变差异最大,从而使板材的基面织构显著弱化,沿板材挤压方向(ED)、宽度方向(TD)和45°方向的延伸率分别达到22.9%、19.5%和22.7%。此外,Xu等[101]在模腔内沿板材宽度方向设计了45°的夹角,在挤压过程中引入沿板材TD分布的非均匀变形。与传统挤压工艺相比,这种具有横向梯度结构的非对称挤压工艺制备的AZ31板材形成了双峰织构,且织构强度显著弱化。

Wang等[102]提出了一种非对称分流挤压模具,通过分流桥尾部角度的非对称设计和挤压焊合界面的摩擦作用引入剪切变形,从而改善挤压镁合金板材的织构,提高其成形性能。与传统挤压和分流挤压相比,非对称分流挤压过程中材料经历了更大的剪切变形,使板材晶粒显著细化,同时使(0002)基面织构的分布更分散,织构强度更低。当非对称分流角度为90°时,挤压AZ31镁合金板材的平均晶粒尺寸细化至5.2 μm,织构强度下降至10.05,室温杯突值达到3.3,与传统挤压相比,杯突值提高了74%。

2.2 镁合金复合板的非对称挤压

Mg/Mg、Mg/Al等新型复合镁合金板材研究近年来取得重要进展[103,104],对改善单一镁合金材料性能具有重要意义。将AZ31变形镁合金构建为多层坯料,利用坯料间的界面作用,实现非对称加工的效果。He等[105]将AZ31镁合金沿轴向分为若干块,组装成为同种坯料复合挤压,在挤压过程中引入多个界面,可以有效弱化挤压态AZ31镁合金<101¯0>纤维织构、细化晶粒。

在镁合金板材弯曲、拉深和胀形等二次成形工艺中,板材内外侧的应力状态不同。通常板材内侧受压应力,要求较高的抗压能力;外侧受拉应力,要求较好的塑性延伸能力。因此,将AZ31板材外侧替换为塑性较好的Mg-RE合金,形成AZ31与Mg-RE合金组成的复合板材,有望提高板材塑性成形能力。Wang等[106]通过分流模挤压制备了AZ31/W0镁合金复合板,在复合界面处存在宽度为0.35 μm扩散区,界面焊合强度达到149 MPa。在后续成形中将W0稀土镁合金复合层置于拉应力区,充分发挥其塑性好的特点,使复合板获得良好的成形性能,杯突值达到5.3 mm,显著高于AZ31和W0单一板材的杯突值。

将常见AZ31镁合金与铝合金构建复合坯料,经挤压加工可得到综合性能较好的Mg/Al复合板材。Wu等[107]通过“镁包铝”的方式挤压制备了AZ31/7075异质轻合金复合板,复合板的屈服强度达到300 MPa。与相同条件下(坯料温度为470℃,挤压速率为4.5 mm/min)挤压制备的AZ31镁合金板材相比,AZ31/7075异质轻合金复合板的屈服强度提高了145 MPa。Chai等[108]通过挤压制备了AZ31/4047双层异质轻合金复合板,由于AZ31镁合金和4047铝合金复合界面处产生了较大的剪切变形,AZ31镁合金复合层的(0002)织构向ED偏转。与传统挤压的AZ31镁合金板材相比,AZ31/4047双层异质轻合金复合板具有更好的弯曲成形性能。Tang等[109]通过分流挤压和热轧工艺制备了“铝包镁”形式的6063/AZ91/6063复合板材。6063铝合金和AZ91镁合金复合界面处形成了由Al3Mg2和Mg17Al12金属间化合物组成的扩散过渡区。

2.3 镁合金型材的非对称挤压

在镁合金复杂截面型材的挤压过程中,经常存在材料流速不均匀的问题。通过在新型模具中设置阻流坎、导流板等非对称结构,可以较好地平衡挤压过程中材料流动速率,得到几何尺寸更加均匀、平直度更好的镁合金型材。黄东男等[110]设计了3种不同导流角的挤压模具,通过优化导流角,解决了AZ91镁合金散热器型材挤压过程中的非均匀变形问题,使其截面温度与流速分布更均匀,得到合格的镁合金散热器型材。

代昌浩和李强武[111]采用数值模拟优化了镁合金薄壁空心型材挤压过程中的流速分布和应力-应变分布,通过设置阻流坎,使AZ91挤压镁合金空心型材截面上流速均方差从改进前的14.53下降至3.25。Bai等[112~115]研究了航空座椅镁合金空心型材挤压工艺和挤压焊合过程,建立了镁合金三维挤压极限图,设计了挤压焊合物理模拟实验装置,实现了镁合金在三向压应力状态下的固态焊合,深入分析了挤压速率、温度、静水压力和应变等参数对Mg-Al-Zn-RE镁合金挤压焊缝质量的影响。进一步通过非对称挤压模具设计,得到了良好表面质量,力学性能和弯曲性能的挤压型材,并成功试制出飞机座椅靠背框架。王敬丰等[116]对超大规格的镁合金宽幅薄壁中空型材结构和挤压工艺参数进行优化,使挤压过程中材料流动速率分布更加均匀,有效避免了充填不足、扭拧卷曲的问题。

2.4 镁合金管材的非对称剪切挤压

镁合金管材在挤压过程中常常因坯料组织粗大、变形不均匀而导致力学性能不理想。在挤压坯料方面,Hu等[117]提出了“正挤压+一次或多次连续剪切”为变形路径的坯料制备方法,大大改善和细化了镁合金棒坯的微观组织和第二相,弱化了(0002)基面织构。进一步提出了激冷铸-挤-剪制备高性能镁合金坯料新方法[118],促进镁合金坯料晶粒的多次细化并弱化织构。在挤压坯料制备基础上,Hu等[119]提出了挤压-剪切成形制备镁合金管材的新工艺,与普通挤压相比,镁合金管材挤压+管壁连续等通道挤压成形可显著细化晶粒、提高强度,基面织构显著弱化[120],具有更好的综合力学性能。

3 镁合金板材轧制技术新进展

轧制是镁合金板材的主要制备方法,常规轧制过程中上、下轧制工作辊辊面速率相同,在镁合金板面上形成对称应力,使板材晶粒c轴几乎都垂直于轧面,导致镁板具有强烈的基面织构,后续进一步减薄和二次塑性加工性能严重下降[121~124]。为此,常规轧制镁合金板材,特别是轧制厚度8 mm以下的镁合金薄板,需要多次中间退火,导致工序较长、工艺复杂,板材轧制成形效率低,生产成本高,极大限制了镁合金薄板的大规模应用。为此,异步轧制、新型非对称轧制等工艺近年来受到广泛关注和重视。

3.1 异步轧制

在异步轧制过程中,由于板材轧机上、下工作辊辊面线速率不同,板材上、下表面受到的摩擦力方向相反,在变形区沿着板材厚度方向引入了剪切变形并在板材中间形成“搓轧区”。由于剪切变形的引入,改变了板材轧制过程中晶粒应力状态以及再结晶过程与塑性变形机制的关系,从而改变了板材的晶粒取向分布,弱化基面织构,使镁合金板材后续的塑性加工能力得到改善。

庞灵欢等[125]采用了180 mm轧机在温度为350℃、单道次压下率为50%的情况下研究了轧辊表面圆周速率比对AZ31镁合金板材基面织构的影响,异步轧制使镁合金板材内部出现剪应力,增加了材料的变形能力,激活了镁合金的非基面滑移系,特别是柱面滑移,使AZ31板材成形性能显著提高。Majchrowicz等[126]研究了差速轧制(DSR)剪切变形对Mg-6Sn合金组织、织构和力学性能的影响。与常规轧制相比,异步轧制使Mg-6Sn板材的晶粒明显细化,基面织构扩展。宋旭东等[127]研究了不同轧制异速比下的挤压态Mg-3Zn-2(Ce/La)-1Mn合金微观组织及织构演变,异步轧制板材的组织更均匀细小。Zhang等[128]研究了差速轧制Mg-6Al合金的显微组织、织构和力学性能,由于异步轧制引入了剪切应变,导致轧制板材的基面极轴向轧制方向(RD)倾斜约20°。

3.2 衬板轧制

常规轧制镁合金板材易开裂,难以实现单道次大压下量轧制。为此,Li等[129,130]和Wang等[131]研发了新型衬板控轧技术(hard-plate rolling,HPR),即在轧制坯料上、下表面分别附加一块硬质合金衬板,与坯料同时送入轧辊中进行轧制,可实现单道次大压下量(约85%)轧制,大大提升了轧制效率。

采用HPR制备技术不仅能获得具有良好成形性的镁合金板材,还可实现难变形镁合金强塑性同时提升[130]。这归因于其独特的混晶结构,即具有强织构的粗大微米晶和具有弱织构的超细晶/细晶混杂的晶粒组织[132]。该混晶组织的形成一方面是由于HPR促进了非均匀变形和局部动态再结晶形核;同时HPR促进高密度亚微米Mg17Al12动态析出,有效抑制细小的再结晶晶粒长大[129~131]。细晶/超细晶和粗晶在拉伸不同阶段分别承载塑性变形的协同作用,提高了合金加工硬化能力,使强塑性同时提高[133]。Zhang等[134]通过HPR (单道次80%压下量)制备的混晶结构AZ91镁合金在300℃下延伸率约为580%,具有优异的超塑性。考虑到通常需要经过多道次常规轧制才能获得与之相当的超塑性,HPR在生产超塑性镁合金方面也具有极大的优势。

基于HPR技术,Wang等[135]提出了一种新的非对称轧制方法——波浪形衬板轧制(wave-shaped rolling,WSR)。通过在板材的下表面添加一块波浪形模具,使上、下表面轧制应力呈非对称状态。采用WSR技术加工制备的Mg-6Al-3Sn合金板材基面织构明显减弱,断裂伸长率可达到22.5%。

Wang等[136]采用大压下量控制轧制技术在Mg-1Zn-1Sn-0.3Y-0.2Ca合金中引入少量随机取向晶粒,成功实现了强弱混杂织构控制,有助于协调局部应变并激活非基面滑移,使延伸率从约15%提升至约27%,同时抗拉强度可达到约255 MPa,为低合金化镁合金的高性能化和短流程制备提供了新思路。

3.3 厚板侧向轧制

常用镁合金板材具有很强的(0002)基面织构,沿板材TD施加压应力,可以促进基面侧向偏转,改善基面的空间分布,增大沿TD变形的Schimid因子,但侧向压缩仅适合于处理厚度20 mm以上的厚板。Zhu等[137]研究了预时效-侧向轧制耦合工艺对AZ80镁合金厚板(厚40 mm)微观组织和力学性能的影响,在200℃下将板材侧轧至不同的厚度,变形量为10%~40%,可以显著提高AZ80镁合金的力学性能。

Xin等[138]发展了一种通过侧向预变形轧制预制孪晶,从而弱化轧制镁合金板材织构的方法。沿侧向(TD)对20 mm厚AZ31板材进行预变形轧制,然后再沿法向(ND)进行轧制,使板材内部出现拉伸孪晶,改变了初始的基面取向,在后续300℃下的轧制过程中单道次的最大变形量显著增加。

3.4 复合板轧制

镁合金复合板可充分利用镁合金和复合坯料的优势,克服单一板材的缺点。复合轧制是制备镁合金复合板的常用工艺,可生产大面积和大厚度的同种或者异种金属层压复合板[139,140]。吴宗河等[141]探索了压下率、轧制温度和轧制速率等多种轧制参数下热轧7075 Al/AZ31B镁合金复合板结合强度的变化规律,由于界面元素扩散宽度的增大和镁合金近界面晶粒组织的细化,铝镁合金复合板结合强度随压下率增加先升高后降低,但大变形导致Mg基体近界面处产生微裂纹和镁合金侧晶粒异常长大,导致复合板材强度下降。

吕胡缘等[142]研究了轧制道次对AZ31复合板微观组织与性能的影响。随着轧制道次增加,板材抗拉强度从260 MPa增加至310 MPa,最后稳定在350 MPa左右。同时,复合板材的非基面织构组分增加。Huo等[143]研究了Al/Mg/Al复合板热轧工艺,可以在较小压下量实现冶金结合,但在Al/Mg界面出现了Al3Mg2和Mg17Al12金属间化合物。

Habila等[144]研究了循环累积叠轧Al1050/AZ31/Al1050复合板材的组织和织构,复合叠轧使AZ31组织细化,呈等轴晶组织,Al1050组织中沿轧制方向平行发展拉长晶粒,结合界面出现Mg17Al12和Mg2Al3相。在复合轧制工艺过程中AZ31表现出强基面织构,Al1050表现出微弱轧制织构。

Tayyebi等[145]在室温下采用Al5052和AZ31B经3道次的累积复合叠轧工艺制备高强度Al/Mg复合板材。随着应变增加,轧制方向晶粒被拉长,Mg层发生晶粒细化。Rahmatabadi等[146]采用双相Mg-Li合金,利用冷轧键合工艺制备了3层Al/Mg-Li/Al复合板材,所得复合板材结合强度较好。

3.5 在线加热轧制

镁合金板材,特别是镁合金薄板在热轧过程中因坯料温度下降较快,导致镁合金薄板单道次轧制压下量低,轧制成形性较差。为了防止轧制过程中坯料温度过快下降,重庆大学潘复生团队[147,148]开发了在线加热轧制(On-LHR)镁合金薄板技术和装备,如图2[147,148]所示。与常规热传导加热镁合金板坯相比,在线加热轧制通过电流的热效应使板材产生热量,板材加热效率快。板材加热和轧制过程中均施加一定的张力,使得多道次轧制板材保持平直,无翘曲缺陷出现。

图2

图2   在线加热轧制设备实物图及在线加热轧制设备示意图[147,148]

Fig.2   Equipment of online heating rolling (a) and its schematic diagram (b)[147,148]


在此基础上,潘复生团队开展了在线加热轧制镁合金板材的相关研究工作。Pan等[149]采用On-LHR工艺制备了AZ31B板材,其平均晶粒尺寸约为4.1 μm,沿轧制方向的屈服强度、抗拉强度和断裂伸长率分别为232 MPa、347 MPa和21%,展现出很好的综合力学性能。Xiao等[150]研究认为On-LHR工艺制备的AZ31镁合金板材的剪切带内大部分晶粒基面平行于剪切带分布方向。随着道次变形量的增加,剪切带与RD的夹角逐渐减小,板材屈服强度逐渐降低。

On-LHR可大大降低镁合金边部裂纹敏感性,确保平直板形和表面质量。Huang等[151]进一步研究了轧制张力对On-LHR制备AZ31镁合金板材边裂纹的影响,合适的张力对控制镁合金板材轧制边裂和获得良好轧制板型具有重要作用。此外,刘强等研究认为在线加热轧制Mg-1.0Al-1.0Sn-0.5Mn[152]和Mg-6.0Al-1.0Sn-0.5Mn[153]板材裂纹明显低于常规轧制板材。

3.6 宽幅板卷轧制

镁合金板卷轧制效率高,经过多年研究,镁合金大规格铸坯制备和宽幅板卷轧制工艺基础理论与技术取得了重要进展。东北大学乐启炽课题组开展了新型电磁场对镁合金坯料铸造的三传及其对凝固行为影响研究[154,155],开发出了镁合金大规格高质量扁锭的电磁铸造技术与装备[156,157],成功研制出横截面为400 mm × 1600 mm、长度达5000 mm的迄今最大镁合金大扁锭,为大卷重宽幅镁板卷的轧制生产提供了前提。同时研究了AZ31镁板辊道输送温度行程特征、轧制变形及其热行为与工艺参数的关系[158~160],构建了空冷过程温控模型和近恒温轧制判据;针对镁板轧制温度难以在线检测的问题,构建了镁板坯发射率经验模型,并结合所建立的轧制力半经验模型辅助感知变形区板温变化,为宽幅镁板近恒温轧制提供了基础理论支撑。

针对镁合金宽板轧制易出现边裂从而导致轧制成材率较低的问题,研究了不同轧制工艺对AZ31镁合金宽板边裂的影响,建立了轧制区带张力轧制模型和边部失效预判模型[161,162]。通过研究明确了坯料边部倒角类型对宽板轧制区边部温度场和应力状态的影响,显著减少了边裂,大幅提高了宽板的轧制成材率。明确了预轧制、预侧压和大压下不同组合轧制路径与制度,显著改善镁合金宽板横向和厚向的变形与组织均匀性,还能通过促进变形过程中的再结晶形核,显著细化晶粒,促进<c + a>锥面滑移系开动,有效促进连续动态再结晶的发生,从而显著改善轧板的基面织构和轧制成形性,轧制综合成材率提高10%以上[163~165]

4 变形镁合金锻造技术新进展

镁合金锻造主要用于制备较大尺寸厚板或成形加工高性能复杂构件,大尺寸厚板可以通过机加工成为复杂构件,主要用于高端运动、航空航天、国防军用等领域。镁合金由于密排六方结构,其塑性成型能力较差,在大尺寸厚板坯料和复杂构件锻造成形时,需要掌握镁合金的锻造变形行为,在此基础上发展新型锻造工艺,改善复杂结构镁合金成形过程,从而得到高质量的锻造构件。

4.1 镁合金锻造变形行为

一般采用单向压缩来研究镁合金锻造变形行为[166,167],通过单向压缩实验可以模拟实际锻造过程,基于压缩应力-应变曲线、试样形变尺寸(有无开裂、试样椭圆度等),以及变形组织演变特性,可绘制镁合金锻造成形加工图[167~170],为后续锻造加工提供工艺指导。此外,平面应变条件下的反向挤压法[171]也可用于锻造变形行为评价,与单向压缩相比,该方法的应力状态比较复杂,其载荷-位移曲线难以直接利用,但其更接近实际锻造过程,同时考虑了摩擦条件的影响,仍然有很好的指导作用。

常用锻造镁合金包括AZ31、AZ61、AZ80等Mg-Al系镁合金、ZK60等[172]Mg-Zn系镁合金以及WE43等[173~176]Mg-RE系镁合金。Madaj等[177]研究认为AZ31锻造成形性优于AZ61和AZ91,能够锻造成形复杂的盒状零件,但AZ61合金的充型能力、缺口冲击性能、锻造温度敏感性等优于AZ31[178]。AZ80合金拥有优良的锻造成形性能,可以制备出高质量的锻造产品[179]。均匀细小的锻造坯料初始组织有利于实现良好的锻造质量[180],Henry等[181]研究认为WE43合金具有宽范围的可锻窗口。Panigrahi等[182]采用锻造和时效处理来调控WE43合金的力学性能,通过合适的锻造工艺其屈服强度、抗拉强度与延伸率可达到344 MPa、388 MPa和23%。Asqardoust等[183]研究了WE54合金的热压缩变形行为,温度高于300℃时,变形量达到0.6时不会开裂,进一步提高温度至350~400℃,出现动态软化效应,为后续锻造加工提供了参考。

锻造变形温度与速率对锻件成形有重要影响[184],坯料温度在实现良好的锻造成形性能、避免缺陷(开裂、过渡氧化等)、降低能耗等目标之间平衡选择。采用数控锻造和非对称锻造,在高应变速率下镁合金仍具有较好的塑性成形能力[185,186]

4.2 镁合金大塑性锻造成形

在镁合金锻件的成形过程中,经常存在变形不均匀、性能一致性差的问题,由此开发了适合镁合金的往复循环多道次镦挤开坯技术、扩收控制大比率锻造技术、挤锻复合一次成形技术等大塑性锻造技术,大幅提高了锻件的整体变形量和应变均匀性,从而获得组织相对均匀,性能相对稳定的镁合金锻件。

王强等[187]和耿立业等[188]提出了往复循环多道次挤压开坯技术,实现了大尺寸坯料的大塑性变形,内部晶粒得到了破碎细化,还消除了坯料内部自身的缺陷(缩孔、缩松等),消除了不均匀的微观组织。提出了扩收控制大比率锻造技术,促进轮盘件模具底部材料的流动、减小“难变形区”,提高了关键承力部位变形量,改善了该部位的综合力学性能,同时减小了成形面积和单位变形力,降低载荷。

Zeng等[189~191]和王锋华等[192]建立了仅含一个待定参数的镁合金热变形本构模型和动态再结晶动力学模型,成功预测了不同工艺条件下锻造成形力及再结晶晶粒体积分数。提出了挤锻复合一次成形技术,其原理是在反挤压筒形件模具顶部设计一圈外法兰,在变形初期,使材料受压缩向下流动,充满底部型腔;在变形中期,材料沿筒壁流动,与挤压方向相反;在变形后期,材料沿水平方向充填法兰。该技术能很大程度上增大材料的整体变形量和应变均匀性,并成功用于大尺寸构件的制备加工。

4.3 镁合金轮毂锻造成形

轮毂是汽车簧下旋转部件,轻量化和阻尼减振效果显著。锻造镁合金轮毂具有组织致密、力学性能优良等特点,已在特种车辆和高端赛车领域得到大量应用。锻造镁合金轮毂制备工艺主要包括等温挤压、锻旋复合等工艺。采用等温超塑性模锻可一次性成型近终形的AZ80汽车轮毂,抗大气和盐水环境中疲劳性能良好,可获得比铝合金轮毂高出约30倍的减震性能以及16%以上的综合节油率[193]

为了降低轮毂塑性成形过程中所需的载荷,王强等[194~196]提出了空心坯料反挤压省力成形方法,空心坯料挤压过程中在轮辐部分由于非对称成形而获得大变形量,等效应变较传统挤压提高2倍,使轮毂平均晶粒直径约6.5 μm,比传统挤压轮毂晶粒更细小均匀[196],力学性能得到明显提升,疲劳寿命明显提高[197]

4.4 镁合金特种构件锻造成形

镁合金特种构件主要用于航空航天领域中结构复杂和较高力学性能要求的支架、筋板、锥管、环件等。张浩等[198]和韩修柱等[199]采用Mg-10Gd-2Y-0.5Zn-0.3Zr合金锻造成形陀螺仪支架,针对成形过程中金属流动规律复杂、筋板充填困难等问题,通过有限元模拟、坯料形状优化、分瓣凹模设计等,改善了金属在复杂模具型腔内的充填能力,并降低了等温成形载荷,成形出表面质量良好的稀土镁合金支架。

徐文臣等[200]通过分析成形过程金属流动充填规律,利用分瓣模具结构和等温成形技术,可整体一次性精密成形形状复杂的Mg-9Gd-3Y-0.6Zn-0.5Zr薄腹非对称高圆弧筋类锻件,且构件组织细小均匀,消除了圆弧筋抽料和侧耳充不满等缺陷。李理和刘建才[201]采用等温锻-挤复合成形法,在管壁引入较强的剪切变形,调控组织和基面织构,成功制备了EW94镁合金薄壁锥管。

多向锻造通过大塑性变形工艺使坯料组织细化,进而提高镁合金的综合力学性能[202,203]。Zhang等[204,205]利用多向锻造预处理+模锻终锻的两步成形法制备了AZ31镁合金环件,环件中心区域的等效应变分布相对均匀,晶粒尺寸细小,在较低变形温度下形成单峰基面织构,在较高变形温度下形成双峰非基面织构。

5 镁合金板材的非对称改性

镁合金轧制或挤压板材通常具有强烈(0002)基面织构,冲压、弯曲、拉深等二次塑性成形能力较差。为了提高镁合金轧制板材的力学性能与后续塑性加工能力,调控其织构显得尤为重要。基于非对称加工原理,重庆大学近年来发展了预变形处理、单向多道次弯曲变形、连续弯曲变形等多种针对AZ31镁合金板材的非对称改性工艺,显著提高了AZ31镁合金板材的塑性成形能力。

5.1 预变形处理

近年来,基于预变形的镁合金织构改性工艺得到了较多发展[206~215],通过小应变量冷变形工艺在镁合金板材中引入{101¯2}拉伸孪晶或位错来实现织构取向改性[207,209,211],再通过低温退火使特定晶粒取向保留。通过控制预变形量来调整变形孪晶的比例,得到合适的预变形退火织构[216]

预变形方向平行于c轴才能形成足够的拉伸孪晶,He等[209]根据LAZ331合金的加工硬化行为来确定合适的预拉伸应变量,并沿TD进行预拉伸,从而大幅度减弱平面力学性能各向异性,有效提高其室温成形性能,室温杯突值比挤压态LAZ331合金板材提升近80%。预压缩处理也可弱化基面织构和提高板材塑性成形能力。压缩方向垂直于c轴有利于{101¯2}拉伸孪晶形成,也可从多个方向分别进行预压缩,以得到{101¯2}-{101¯2}双孪晶。He等[213]采用预压缩对强基面织构的轧制态AZ31镁合金板材进行处理,首先沿TD预压缩,随后沿RD预压缩,经低温退火处理后,AZ31镁合金板材的基面织构显著弱化、织构分布更加对称,其室温杯突值从3.8 mm增加到处理后的5.7 mm。

5.2 单向多道次变形

单向多道次弯曲(RUB)[216,217]变形处理工艺是将板材放置于特殊支撑装置上,在张力作用下进行多次往复运动。板材经过支撑装置顶部时,外侧受平行于基面的拉应力作用,内侧则受压应力作用,呈现出非对称状态,在板材厚度方向构建梯度剪切应变,在晶粒内形成不同的孪生组分。在后续的单向多道次弯曲中,基面滑移便变得更加有利,再加上孪生的作用,晶粒取向与应力状态不断发生变化,从而造成晶粒c轴由ND朝着RD倾斜[218,219],经退火后实现晶粒c轴倾转,从而弱化(0002)基面织构,使织构分布更加弥散,最终提高板材的塑性成形性能[220],板材的力学各向异性也得到显著改善[221],室温杯突值由3.2 mm提高至6.2 mm,并展现出较高的成形极限曲线(FLC)[222],在室温和100℃时,薄板的最小极限应变分别提高了约79%和约104%,呈现出较好的室温和微温成形性能,可以成功地冷冲出手机外壳[223]

5.3 连续弯曲变形

在单向多道次弯曲工艺基础上,根据镁合金板材弯曲变形特点,潘复生团队提出了一种效率更高的可工业化应用的连续弯曲变形工艺(continuous bending,CB)[224,225],如图3[224,225]所示。可通过调整上下模之间的距离来改变弯曲角度,通过改变上下模的顶头数量来改变单道次内累积应变,也可以进行多道次变形,增加累积变形量。AZ31镁合金板材经连续弯曲变形处理并退火后,其宏观织构显著弱化并更加发散,室温塑性得到明显改善,其IE杯突值提高了1.3倍[226]

图3

图3   连续弯曲实验装置图[224,225]

Fig.3   Continuous bending experiment (V—velocity of sheet, T—pull force, θ—bending angle of sheet)[224,225]


6 新型非对称加工技术在大尺寸镁合金产品制备中的应用

镁合金室温塑性差,塑性成形难,特别是大尺寸板材、大尺寸中空型材和超大尺寸环件等大型产品和构件的塑性成形,由于尺寸大、结构复杂等,加工难度很大,如何提高坯料塑性加工成形性和改善成形过程的工艺性,一直是变形镁合金塑性加工领域的难题。

对于镁合金板材轧制易边裂、大尺寸宽幅板材难以加工等问题,重庆大学系统开展镁合金轧制板坯散热与温度调控、裂纹萌生与扩展行为等研究,发展镁合金板材非对称恒温挤压技术和近恒温宽幅镁合金板轧制技术,成功研发出1.5~2.2 m宽大尺寸镁合金板材(图4),部分板材已在汽车上示范应用。

图4

图4   AZ31镁合金宽幅板材(1.5~2.2 m宽)

Fig.4   Wide sheet of AZ31 magnesium alloy (The width is 1.5-2.2 m)


对于镁合金大型宽幅挤压型材组织性能不稳定等问题,重庆大学研发了非对称挤压加工新技术包括坯料加热、模具结构优化、矫直等,揭示了镁合金在挤压过程中的流变行为和变形机制,突破镁合金挤压型材挤压过程中的组织与性能协同调控关键技术,成功研发了多款复杂结构镁合金型材,部分型材已在地铁、高铁、城铁等轨道交通车厢上大量应用,并在世界上率先开发出502 mm宽超大镁合金中空型材(图5a)。

图5

图5   镁合金宽幅型材(502 mm宽)和镁合金大尺寸环件(直径3.49 m)

Fig.5   Wide profile (width is 502 mm) (a) and large circular component (diameter is 3.49 m) (b)


采用传统大锭坯与中心开孔工艺制备大型镁合金环件难度很大,潘复生团队创新提出了通过离心铸造-环轧复合成形新工艺,利用离心铸造工艺制备超大尺寸环形坯料,进一步采用环轧工艺,控制内环和外环的轧制变形及其非对称剪切应力,成功制备直径3.49 m的超大尺寸镁合金环件(图5b)。

7 结束语

在碳达峰和碳中和战略背景下,轻量化、绿色化、环保以及节能减排受到各个领域的愈发重视。作为最轻的金属结构材料,变形镁合金将在新能源汽车、轨道交通车辆、电子信息、高端装备、生物医用器械、航空航天、国防军工等领域得到更加广泛的应用,起到不可替代的轻量化和节能减排作用。变形镁合金塑性加工技术作为变形镁合金的核心技术,是变形镁合金更大规模应用的关键和核心之一。

过去几年,高塑性变形镁合金及塑性加工技术取得了重要进展。① 发展了“固溶强化增塑”的合金设计理论,开发了一批高塑性高成形性变形镁合金;② 发展了无熔剂纯净化技术、复合纯净化技术和反重力过滤技术,Fe等杂质和氧化物夹杂物含量大幅度降低,明显改善了塑性和成形性;③ 发展了一系列新型非对称加工技术并实现了工业化应用,使变形镁合金基面织构显著弱化,成形性明显提高;④ 开发了往复循环多道次镦挤开坯技术、扩收控制大比率锻造技术、挤锻复合一次成形技术和多向自由环锻技术等大塑性锻造技术,实现了高强韧镁合金大型环件/轮盘件的高效均质制备;⑤ 开发了宽幅镁板近恒温轧制技术,实现了大卷重宽幅镁板卷高精度轧制,显著改善了镁板轧制成形性和组织与性能均匀性。

为了实现变形镁合金应用的大规模增长,未来急需开展的重要工作包括:① 加强材料基因组工程技术应用,进一步发展低成本高强韧、高成形性变形镁合金,形成更多的高成形性变形镁合金牌号,发展更多的镁合金板材专用合金、镁合金管型材专用合金和镁合金锻件专用合金;② 研究氧含量的精确测试方法,强化杂质氧的控制,发展变形镁合金整体纯净化新技术和新装备;③ 发展镁合金板材轧制专用装备和新型非对称加工装备,发展镁合金板材织构调控新技术和新装备,发展超薄、超宽、高精度、高成形性变形镁合金板材;④ 发展高强韧变形镁合金挤压模具设计与加工成套技术,发展宽幅镁合金型材高效制备加工技术,发展高精度型材热处理和矫直等精整技术与装备,发展超宽、高精度变形镁合金型材;⑤ 发展等温轧制技术和大尺寸复杂构件锻造成套技术和装备。

参考文献

Zhang J Y, Jian Y X, Zhao X Z, et al.

The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment

[J]. J. Magnes. Alloy., 2021, 9: 1187

[本文引用: 1]

Zhang C Y, Zhang S Y, Sun D W, et al.

Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy—Fabrication, characterization, degradation and cytocompatibility with BMSCs

[J]. J. Magnes. Alloy., 2021, 9: 1246

Wu T C, Joshi S S, Ho Y H, et al.

Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy

[J]. J. Magnes. Alloy., 2021, 9: 1406

Motlagh E B, Lynch P A, Dorin T, et al.

X-ray analysis of twin dominated deformation in an aged Mg-7Sn-3Zn-0.04Na alloy

[J]. J. Magnes. Alloy., 2021, 9: 1201

Marzbanrad B, Razmpoosh M H, Toyserkani E, et al.

Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075

[J]. J. Magnes. Alloy., 2021, 9: 1458

Liao H B, Zhan M Y, Li C B, et al.

Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder

[J]. J. Magnes. Alloy., 2021, 9: 1211

Yu H, Fan S D, Meng S J, et al.

Microstructural evolution and mechanical properties of binary Mg-xBi (x = 2, 5, and 8 wt%) alloys

[J]. J. Magnes. Alloy., 2021, 9: 983

Shi Z Z, Chen H T, Zhang K, et al.

Crystallography of precipitates in Mg alloys

[J]. J. Magnes. Alloy., 2021, 9: 416

Rekab-Djabri H, Salam M M A, Daoud S, et al.

Ground state parameters, electronic properties and elastic constants of CaMg3: DFT study

[J]. J. Magnes. Alloy., 2020, 8: 1166

Medina J, Garces G, Pérez P, et al.

High temperature mechanical behaviour of Mg-6Zn-1Y alloy with 1wt. % calcium addition: Reinforcing effect due to I-(Mg3Zn6Y1) and Mg6Zn3Ca2 phases

[J]. J. Magnes. Alloy., 2020, 8: 1047

[本文引用: 1]

Kim Y J, Lee J U, Kim Y M, et al.

Microstructural evolution and grain growth mechanism of pre-twinned magnesium alloy during annealing

[J]. J. Magnes. Alloy., 2021, 9: 1233

[本文引用: 1]

Fu J L, Du W B, Jia L Y, et al.

Cooling rate controlled basal precipitates and age hardening response of solid-soluted Mg-Gd-Er-Zn-Zr alloy

[J]. J. Magnes. Alloy., 2021, 9: 1261

Ding C, Hu X S, Shi H L, et al.

Development and strengthening mechanisms of a hybrid CNTs@SiCp/Mg-6Zn composite fabricated by a novel method

[J]. J. Magnes. Alloy., 2021, 9: 1363

Cui X J, Ning C M, Zhang G A, et al.

Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy

[J]. J. Magnes. Alloy., 2021, 9: 1285

Li X Q, Ren L, Le Q C, et al.

Reducing the yield asymmetry in Mg-5Li-3Al-2Zn alloy by hot-extrusion and multi-pass rolling

[J]. J. Magnes. Alloy., 2021, 9: 937

Lv B J, Wang S, Xu T W, et al.

Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg-6.0Zn-0.5 Mn alloy

[J]. J. Magnes. Alloy., 2021, 9: 840

Liu C Q, Chen X H, Chen J, et al.

The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4Zn alloy

[J]. J. Magnes. Alloy., 2021, 9: 1084

Silva E P, Buzolin R H, Marques F, et al.

Effect of Ce-base mischmetal addition on the microstructure and mechanical properties of hot-rolled ZK60 alloy

[J]. J. Magnes. Alloy., 2021, 9: 995

Sun B Z, Zhang H X, Dong Y, et al.

Rotational and translational domains of beta precipitate in aged binary Mg-Ce alloys

[J]. J. Magnes. Alloy., 2021, 9: 1039

Wang C, Luo T J, Liu Y T, et al.

Residual stress and precipitation of Mg-5Zn-3.5Sn-1Mn-0.5Ca-0.5Cu alloy with different quenching rates

[J]. J. Magnes. Alloy., 2021, 9: 604

[本文引用: 1]

Tang W Q, Lee J Y, Wang H M, et al.

Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet

[J]. J. Magnes. Alloy., 2021, 9: 927

[本文引用: 1]

Tong L B, Chu J H, Sun W T, et al.

Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing

[J]. J. Magnes. Alloy., 2021, 9: 1007

Zhao L Y, Yan H, Chen R S, et al.

The preferential growth and related textural evolution during static recrystallization in a cold-rolled Mg-Zn-Gd alloy

[J]. J. Magnes. Alloy., 2021, 9: 818

Balasubramani N, Wang G, Easton M A, et al.

A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys

[J]. J. Magnes. Alloy., 2021, 9: 829

Guan K, Ma R, Zhang J H, et al.

Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio

[J]. J. Magnes. Alloy., 2021, 9: 1098

Chapuis A, Liu Q.

Modeling strain rate sensitivity and high temperature deformation of Mg-3Al-1Zn alloy

[J]. J. Magnes. Alloy., 2019, 7: 433

[本文引用: 1]

Dobroň P, Drozdenko D, Fekete K, et al.

The slip activity during the transition from elastic to plastic tensile deformation of the Mg-Al-Mn sheet

[J]. J. Magnes. Alloy., 2021, 9: 1057

[本文引用: 1]

Gui Y W, Ouyang L X, Cui Y J, et al.

Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg-9.80Gd-3.78Y-1.12Sm-0.48Zr alloy

[J]. J. Magnes. Alloy., 2021, 9: 456

Hwang J H, Zargaran A, Park G, et al.

Effect of 1Al addition on deformation behavior of Mg

[J]. J. Magnes. Alloy., 2021, 9: 489

Liu Y X, Li Y X, Zhu Q C, et al.

Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy

[J]. J. Magnes. Alloy., 2021, 9: 499

Cheng Q, Chen L, Tang J W, et al.

A comprehensive analysis on microstructure evolution of Mg-5.65Zn-0.66Zr alloy during hot deformation

[J]. J. Magnes. Alloy., 2021, 9: 520

Tang W R, Liu Z, Liu S M, et al.

Deformation mechanism of fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy under high temperature and high strain rates

[J]. J. Magnes. Alloy., 2020, 8: 1144

Abouhilou F, Hanna A, Azzeddine H, et al.

Microstructure and texture evolution of AZ31 Mg alloy after uniaxial compression and annealing

[J]. J. Magnes. Alloy., 2019, 7: 124

Wan X, Zhang J, Mo X Y, et al.

3D atomic-scale growth characteristics of {101¯2} twin in magnesium

[J]. J. Magnes. Alloy., 2019, 7: 474

[本文引用: 1]

Varma R, Kada S, Barnett M.

Effect of plastic deformation on microstructure and thermoelectric properties of Mg2Sn alloys

[J]. J. Magnes. Alloy., 2021, 9: 123

[本文引用: 1]

Zhang Y, Jiang H T, Kang Q, et al.

Microstructure evolution and mechanical property of Mg-3Al alloys with addition of Ca and Gd during rolling and annealing process

[J]. J. Magnes. Alloy., 2020, 8: 769

Sheng L Y, Du B N, Hu Z Y, et al.

Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy

[J]. J. Magnes. Alloy., 2020, 8: 601

Lee S W, Kim S H, Park S H.

Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing

[J]. J. Magnes. Alloy., 2020, 8: 537

Kong T, Kwak B J, Kim J, et al.

Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing

[J]. J. Magnes. Alloy., 2020, 8: 163

Zhang F, Liu Z, Wang Y, et al.

The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture

[J]. J. Magnes. Alloy., 2020, 8: 172

Yu J C, Song B, Xia D B, et al.

Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates

[J]. J. Magnes. Alloy., 2020, 8: 849

[本文引用: 1]

Xia X S, Zhang K, Ma M L, et al.

Constitutive modeling of flow behavior and processing maps of Mg-8.1Gd-4.5Y-0.3Zr alloy

[J]. J. Magnes. Alloy., 2020, 8: 917

Xu T C, Yang Y, Peng X D, et al.

Overview of advancement and development trend on magnesium alloy

[J]. J. Magnes. Alloy., 2019, 7: 536

Sriraman N, Kumaran S, Narayanan N S.

Influence of thermomechanical processing on microstructure, mechanical and strain hardening properties of single-phase Mg-4Li-0.5Ca alloy for structural application

[J]. J. Magnes. Alloy., 2020, 8: 1262

Islam R, Haghshenas M.

Statistical optimization of stress level in Mg-Li-Al alloys upon hot compression testing

[J]. J. Magnes. Alloy., 2019, 7: 203

Lian Y, Ji P E, Zhang J, et al.

Effect of homogenization annealing on internal residual stress distribution and texture in ME21 magnesium alloy extruded plates

[J]. J. Magnes. Alloy., 2019, 7: 186

[本文引用: 1]

Liu T T, Pan F S.

Development and application of “solid solution strengthening and ductilizing” for magnesium alloys

[J]. Chin. J. Nonferrous Met., 2019, 29: 2050

[本文引用: 8]

刘婷婷, 潘复生.

镁合金“固溶强化增塑”理论的发展和应用

[J]. 中国有色金属学报, 2019, 29: 2050

[本文引用: 8]

Yu Z W, Tang A T, He J J, et al.

Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy

[J]. Mater. Charact., 2018, 136: 310

[本文引用: 1]

Hidalgo-Manrique P, Herrera-Solaz V, Segurado J, et al.

Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature

[J]. Acta Mater., 2015, 92: 265

[本文引用: 1]

Yang Q S, Jiang B, Jiang W, et al.

Evolution of microstructure and mechanical properties of Mg-Mn-Ce alloys under hot extrusion

[J]. Mater. Sci. Eng., 2015, A628: 143

[本文引用: 1]

She J, Peng P, Xiao L, et al.

Development of high strength and ductility in Mg-2Zn extruded alloy by high content Mn-alloying

[J]. Mater. Sci. Eng., 2019, A765: 138203

[本文引用: 1]

She J, Pan F S, Guo W, et al.

Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy

[J]. Mater. Des., 2016, 90: 7

[本文引用: 1]

Pan F, Mao J J, Zhang G, et al.

Development of high-strength, low-cost wrought Mg-2.0 mass% Zn alloy with high Mn content

[J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 630

[本文引用: 1]

Zhao T S, Hu Y B, He B, et al.

Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy

[J]. Mater. Sci. Eng., 2019, A765: 138292

[本文引用: 1]

Hu Y B, Deng J, Zhao C, et al.

Microstructure and mechanical properties of Mg-Gd-Zr alloys with low gadolinium contents

[J]. J. Mater. Sci., 2011, 46: 5838

[本文引用: 1]

Peng P, Tang A T, She J, et al.

Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure

[J]. Mater. Sci. Eng., 2021, A803: 140569

[本文引用: 1]

Huang L, Huang G S, Deng Q Y, et al.

Effects of trace Ce and Ca on microstructure evolution and formability of AZ31 alloys

[J]. Chin. J. Nonferrous Met., 2019, 29: 429

[本文引用: 1]

黄 伦, 黄光胜, 邓钱元.

微量Ce和Ca对AZ31组织演变及成形性能的影响

[J]. 中国有色金属学报, 2019, 29: 429

[本文引用: 1]

Wang G G, Huang G S, Huang Y, et al.

Achieving high ductility in hot-rolled Mg-xZn-0.2Ca-0.2Ce sheet by Zn addition

[J]. JOM, 2020, 72: 1607

[本文引用: 1]

Hu H, Luo A L.

Inclusions in molten magnes. Potential assessment techniques

[J]. JOM, 1996, 48(10): 47

[本文引用: 1]

Han Y F, Liu J R, Shen S J, et al.

Non-metallic inclusions in magnesium alloy and purification methods

[J]. Found. Technol., 2006, 27: 613

[本文引用: 1]

韩英芬, 刘建睿, 沈淑娟.

镁合金中的非金属夹杂物及其净化方法

[J]. 铸造技术, 2006, 27: 613

[本文引用: 1]

Pan F S, Huang G S, Deng Q Y, et al.

Metal melt purifying device

[P]. Chin Pat, 201710366670.9, 2017

[本文引用: 1]

潘复生, 黄光胜, 邓钱元.

一种金属熔体的净化装置

[P]. 中国专利, 201710366670.9, 2017)

[本文引用: 1]

Hou Z Q, Jiang B, Wang Y Y, et al.

Development and application of new magnesium alloy materials and their new preparation and processing technologies

[J]. Aerosp. Shanghai (Chin. Engl.), 2021, 38(3): 119

[本文引用: 1]

候正全, 蒋 斌, 王煜烨.

镁合金新材料及制备加工新技术发展与应用

[J]. 上海航天(中英文), 2021, 38(3): 119

[本文引用: 1]

Pan F S, Chen X H, Yan T, et al.

A novel approach to melt purification of magnesium alloys

[J]. J. Magnes. Alloy., 2016, 4: 8

[本文引用: 1]

Pan F S, Yang M B, Chen X H.

A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys

[J]. J. Mater. Sci. Technol., 2016, 32: 1211

[本文引用: 1]

Dai Y, Chen X H, Yan T, et al.

Improved corrosion resistance in AZ61 magnesium alloys induced by impurity reduction

[J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 225

[本文引用: 1]

Lee Y C, Dahle A K, Stjohn D H.

The role of solute in grain refinement of magnesium

[J]. Metall. Mater. Trans., 2000, 31A: 2895

[本文引用: 1]

Ali Y, Qiu D, Jiang B, et al.

Current research progress in grain refinement of cast magnesium alloys: A review article

[J]. J. Alloys Compd., 2015, 619: 639

[本文引用: 1]

Kelly P M, Zhang M X.

Edge-to-edge matching—The fundamentals

[J]. Metall. Mater. Trans., 2006, 37A: 833

[本文引用: 1]

Zhang M X, Kelly P M.

Edge-to-edge matching and its applications: Part II. Application to Mg-Al, Mg-Y and Mg-Mn alloys

[J]. Acta Mater., 2005, 53: 1085

[本文引用: 1]

Wang Y X, Zeng X Q, Ding W J.

Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy

[J]. Scr. Mater., 2006, 54: 269

[本文引用: 1]

Qian M, Stjohn D H.

Grain nucleation and formation in Mg-Zr alloys

[J]. Int. J. Cast Met. Res., 2009, 22: 256

[本文引用: 1]

Qiu D, Zhang M X, Taylor J A, et al.

A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys

[J]. Acta Mater., 2009, 57: 3052

[本文引用: 1]

Fu H M, Zhang M X, Qiu D, et al.

Grain refinement by AlN particles in Mg-Al based alloys

[J]. J. Alloys Compd., 2009, 478: 809

[本文引用: 1]

Shahzad M, Janeček M, Wagner L.

Effects of prior homogenization treatments on microstructure development and mechanical properties of the extruded wrought magnesium alloy ZK60

[J]. Int. J. Mater. Res., 2009, 100: 370

[本文引用: 1]

Zhi Y, Hong X, Hu H J, et al.

Improving the corrosion resistance of the AZ61 magnesium alloy with a homogenization treatment before the extrusion-shear process

[J]. Mater. Technol., 2018, 52: 803

Peng J, Pan F S, Zhou M, et al.

Effects of homogenization on the formability of ZM21 alloy

[J]. Mater. Sci. Forum, 2007, 546-549: 355

[本文引用: 1]

Pan F S, Peng J, Ding P D, et al.

The process to increase the plasticity of magnesium alloy profile

[P]. Chin Pat, 200810069376.2, 2008

[本文引用: 1]

潘复生, 彭 建, 丁培道.

提高镁合金型材塑性的热挤压生产工艺

[P]. 中国专利, 200810069376.2, 2008)

[本文引用: 1]

Yang Y, Xiong X M, Chen J, et al.

Research advances in magnesium and magnesium alloys worldwide in 2020

[J]. J. Magnes. Alloy., 2021, 9: 705

[本文引用: 1]

Hu L, Lv H Y, Shi L X, et al.

Research on deformation mechanism of AZ31 magnesium alloy sheet with non-basal texture during uniaxial tension at room temperature: A visco-plastic self-consistent analysis

[J]. J. Magnes. Alloy., doi: 10.1016/j.jma.2020.12.008

Wang Y P, Li F, Wang Y, et al.

Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion (SE)

[J]. J. Magnes. Alloy., 2020, 8: 1304

Sułkowski B, Janoska M, Boczkal G, et al.

The effect of severe plastic deformation on the Mg properties after CEC deformation

[J]. J. Magnes. Alloy., 2020, 8: 761

Meng Y Z, Yu J M, Zhang G S, et al.

Effect of circumferential strain rate on dynamic recrystallization and texture of Mg-13Gd-4Y-2Zn-0.5Zr alloy during rotary backward extrusion

[J]. J. Magnes. Alloy., 2020, 8: 1228

Zhao C Y, Li Z Y, Shi J H, et al.

Strain hardening behavior of Mg-Y alloys after extrusion process

[J]. J. Magnes. Alloy., 2019, 7: 672

Zhao L Y, Xin Y C, Jin Z Y, et al.

Thermal stability of different texture components in extruded Mg-3Al-1Zn alloy

[J]. J. Magnes. Alloy., 2019, 7: 577

Zhao Y T, Chang L L, Guo J, et al.

Twinning behavior of hot extruded AZ31 hexagonal prisms during uniaxial compression

[J]. J. Magnes. Alloy., 2019, 7: 90

Zhong L P, Wang Y J, Dou Y C.

On the improved tensile strength and ductility of Mg-Sn-Zn-Mn alloy processed by aging prior to extrusion

[J]. J. Magnes. Alloy., 2019, 7: 637

[本文引用: 1]

Xu B Q, Sun J P, Yang Z Q, et al.

Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP

[J]. Mater. Sci. Eng., 2020, A780: 139191

[本文引用: 1]

Yan Z M, Li X B, Zheng J, et al.

Microstructure evolution, texture and mechanical properties of a Mg-Gd-Y-Zn-Zr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity: The influence of passes and processing route

[J]. J. Magnes. Alloy., 2021, 9: 964

Shan Z H, Yang J, Fan J F, et al.

Extraordinary mechanical properties of AZ61 alloy processed by ECAP with 160° channel angle and EPT

[J]. J. Magnes. Alloy., 2021, 9: 548

Zhao X, Li S C, Zhang Z M, et al.

Comparisons of microstructure homogeneity, texture and mechanical properties of AZ80 magnesium alloy fabricated by annular channel angular extrusion and backward extrusion

[J]. J. Magnes. Alloy., 2020, 8: 624

Xu Q, Ma A B, Li Y H, et al.

Microstructure evolution of AZ91 alloy processed by a combination method of equal channel angular pressing and rolling

[J]. J. Magnes. Alloy., 2020, 8: 192

Huang H, Liu H, Wang C, et al.

Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy

[J]. J. Magnes. Alloy., 2019, 7: 617

Yan K, Liu H, Feng N, et al.

Preparation of a single-phase Mg-6Zn alloy via ECAP-stimulated solution treatment

[J]. J. Magnes. Alloy., 2019, 7: 305

[本文引用: 1]

Suh J, Victoria-Hernandez J, Letzig D, et al.

Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing

[J]. J. Mater. Process. Technol., 2015, 217: 286

[本文引用: 1]

Yang Q S, Jiang B, He J J, et al.

Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process

[J]. Mater. Sci. Eng., 2014, A612: 187

[本文引用: 3]

Yang Q S, Jiang B, Pan H C, et al.

Influence of different extrusion processes on mechanical properties of magnesium alloy

[J]. J. Magnes. Alloy., 2014, 2: 220

Yang Q S, Jiang B, Tian Y, et al.

A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets

[J]. Mater. Lett., 2013, 100: 29

[本文引用: 1]

Yang Q S, Jiang B, Zhou G Y, et al.

Influence of an asymmetric shear deformation on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet

[J]. Mater. Sci. Eng., 2014, A590: 440

[本文引用: 2]

Xu J, Song J F, Jiang B, et al.

Effect of effective strain gradient on texture and mechanical properties of Mg-3Al-1Zn alloy sheets produced by asymmetric extrusion

[J]. Mater. Sci. Eng., 2017, A706: 172

[本文引用: 1]

Xu J, Yang T H, Jiang B, et al.

Improved mechanical properties of Mg-3Al-1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution

[J]. J. Alloys Compd., 2018, 762: 719

[本文引用: 1]

Xu J, Jiang B, Song J F, et al.

Unusual texture formation in Mg-3Al-1Zn alloy sheets processed by slope extrusion

[J]. Mater. Sci. Eng., 2018, A732: 1

[本文引用: 1]

Wang Q H, Song J F, Jiang B, et al.

An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion

[J]. Mater. Sci. Eng., 2018, A720: 85

[本文引用: 2]

Zhu Z A, Shi R H, Klarner A D, et al.

Predicting and controlling interfacial microstructure of magnesium/aluminum bimetallic structures for improved interfacial bonding

[J]. J. Magnes. Alloy., 2020, 8: 578

[本文引用: 1]

Sheng K, Lu L W, Xiang Y, et al.

Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion

[J]. J. Magnes. Alloy., 2019, 7: 717

[本文引用: 1]

He J J, Jiang B, Xie H M, et al.

Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion

[J]. Mater. Sci. Eng., 2016, A675: 76

[本文引用: 1]

Wang Q H, Shen Y Q, Jiang B, et al.

Enhanced stretch formability at room temperature for Mg-Al-Zn/Mg-Y laminated composite via porthole die extrusion

[J]. Mater. Sci. Eng., 2018, A731: 184

[本文引用: 1]

Wu Y, Feng B, Xin Y C, et al.

Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion

[J]. Mater. Sci. Eng., 2015, A640: 454

[本文引用: 1]

Chai Y F, Song Y, Jiang B, et al.

Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets

[J]. J. Magnes. Alloy., 2019, 7: 545

[本文引用: 1]

Tang J W, Chen L, Zhao G Q, et al.

Study on Al/Mg/Al sheet fabricated by combination of porthole die co-extrusion and subsequent hot rolling

[J]. J. Alloys Compd., 2019, 784: 727

[本文引用: 1]

Huang D N, Wu N, Dong R F, et al.

Optimization of extrusion mold structure for AZ91D magnesium alloy radiator profiles

[J]. Forg. Stamp. Technol., 2019, 44(10): 131

[本文引用: 1]

黄东男, 吴 南, 董瑞峰.

AZ91D镁合金散热器型材挤压模具结构优化

[J]. 锻压技术, 2019, 44(10): 131

[本文引用: 1]

Dao C H, Li Q W.

Numerical simulation of extrusion process of magnesium alloy profile and die optimization design

[J]. Hot Work. Technol., 2018, 47(11): 170

[本文引用: 1]

代昌浩, 李强武.

镁合金型材挤压过程数值模拟及模具优化设计

[J]. 热加工工艺, 2018, 47(11): 170

[本文引用: 1]

Bai S W, Fang G, Zhou J.

Investigation into the extrudability of a new Mg-Al-Zn-RE alloy with large amounts of alloying elements

[J]. Metall. Mater. Trans., 2019, 50A: 3246

[本文引用: 1]

Bai S W, Fang G, Zhou J.

Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation

[J]. J. Mater. Process. Technol., 2020, 275: 116361

Bai S W, Fang G, Zhou J.

Integrated physical and numerical simulations of weld seam formation during extrusion of magnesium alloy

[J]. J. Mater. Process. Technol., 2019, 266: 82

Bai S W, Fang G.

Experimental and numerical investigation into rectangular tube extrusion of high-strength magnesium alloy

[J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 136

[本文引用: 1]

Wang J F, Peng X, Wang K, et al.

Numerical simulation and experimental study on extrusion forming of ultra-large size wide thin-walled hollow magnesium alloy profiles

[J]. Chin. J. Nonferrous Met., 2020, 30: 2809

[本文引用: 1]

王敬丰, 彭 星, 王 奎.

超大规格宽幅薄壁中空镁合金型材挤压成形的数值模拟及实验研究

[J]. 中国有色金属学报, 2020, 30: 2809

[本文引用: 1]

Hu H J, Ying Y L, Ou Z W, et al.

Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion

[J]. Mater. Sci. Eng., 2017, A695: 360

[本文引用: 1]

Feng J K, Zhang D F, Hu H J, et al.

Improved microstructures of AZ31 magnesium alloy by semi-solid extrusion

[J]. Mater. Sci. Eng., 2021, A800: 140204

[本文引用: 1]

Hu H J, Qin X, Zhang D F, et al.

A novel severe plastic deformation method for manufacturing AZ31 magnesium alloy tube

[J]. Int. J. Adv. Manuf. Technol., 2018, 98: 897

[本文引用: 1]

Hu H J, Hong X, Tian Y, et al.

AZ31 magnesium alloy tube manufactured by composite forming technology including extruded-shear and bending based on finite element numerical simulation and experiments

[J]. Int. J. Adv. Manuf. Technol., 2021, 115: 2395

[本文引用: 1]

Zhang S Y, Wang C, Ning H, et al.

Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling

[J]. J. Magnes. Alloy., 2021, 9: 254

[本文引用: 1]

Javaid A, Czerwinski F.

Effect of hot rolling on microstructure and properties of the ZEK100 alloy

[J]. J. Magnes. Alloy., 2019, 7: 27

Lee J H, Kwak B J, Kong T, et al.

Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains

[J]. J. Magnes. Alloy., 2019, 7: 381

Sadeghi A, Mortezapour H, Samei J, et al.

Anisotropy of mechanical properties and crystallographic texture in hot rolled AZ31+XSr sheets

[J]. J. Magnes. Alloy., 2019, 7: 466

[本文引用: 1]

Pang L H, Xu C, Chen Q Z.

Effect of differential speed rolling on the microstructure and texture of AZ31 magnesium alloy sheets

[J]. Shanghai Met., 2018, 40(6): 79

[本文引用: 1]

庞灵欢, 徐 春, 陈麒忠.

异速轧制对AZ31镁合金板组织与织构的影响

[J]. 上海金属, 2018, 40(6): 79

[本文引用: 1]

Majchrowicz K, Jóźwik P, Chromiński W, et al.

Microstructure, texture and mechanical properties of Mg-6Sn alloy processed by differential speed rolling

[J]. Materials, 2021, 14: 83

[本文引用: 1]

Song X D, Yuan G C, Li X H, et al.

Microstructure and texture evolution of differential speed rolled Mg-3Zn-2(Ce/La)-1Mn alloy

[J]. Heat Treat. Met., 2020, 45(2): 1

[本文引用: 1]

宋旭东, 袁鸽成, 黎小辉.

异步轧制Mg-3Zn-2(Ce/La)-1Mn合金的微观组织及织构演变

[J]. 金属热处理, 2020, 45(2): 1

[本文引用: 1]

Zhang H L, Xu Z G, Yarmolenko S, et al.

Evolution of microstructure and mechanical properties of Mg-6Al alloy processed by differential speed rolling upon post-annealing treatment

[J]. Metals, 2021, 11: 926

[本文引用: 1]

Li Y K, Zha M, Rong J, et al.

Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling

[J]. J. Mater. Sci. Technol., 2021, 88: 215

[本文引用: 2]

Li Y K, Zha M, Jia H L, et al.

Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles

[J]. J. Magnes. Alloy., 2021, 91556

[本文引用: 2]

Wang H Y, Yu Z P, Zhang L, et al.

Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

[J]. Sci. Rep., 2015, 5: 17100

[本文引用: 2]

Li X L, Li X L, Zhou H T, et al.

Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton

[J]. Comput. Mater. Sci., 2017, 140: 95

[本文引用: 1]

Zhang H, Wang H Y, Wang J G, et al.

The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys

[J]. J. Alloys Compd., 2019, 780: 312

[本文引用: 1]

Zhang H M, Cheng X M, Zha M, et al.

A superplastic bimodal grain-structured Mg-9Al-1Zn alloy processed by short-process hard-plate rolling

[J]. Materialia, 2019, 8: 100443

[本文引用: 1]

Wang H Y, Feng T T, Zhang L, et al.

Achieving a weak basal texture in a Mg-6Al-3Sn alloy by wave-shaped die rolling

[J]. Mater. Des., 2015, 88: 157

[本文引用: 1]

Wang C, Ning H, Liu S, et al.

Enhanced ductility and strength of Mg-1Zn-1Sn-0.3Y-0.2Ca alloy achieved by novel micro-texture design

[J]. Scr. Mater., 2021, 204: 114119

[本文引用: 1]

Zhu Y L, Liu F Y, Song B, et al.

Coupling pre-aging treatment and side-rolling to improve the mechanical properties of AZ80 alloys

[J]. Mater. Sci. Eng., 2020, A779: 139158

[本文引用: 1]

Xin Y C, Wang M Y, Zeng Z, et al.

Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability

[J]. Scr. Mater., 2011, 64: 986

[本文引用: 1]

Zheng H P, Wu R Z, Hou L G, et al.

Mathematical analysis and its experimental comparisons for the accumulative roll bonding (ARB) process with different superimposed layers

[J]. J. Magnes. Alloy., 2021, 9: 1741

[本文引用: 1]

Lee T J, Kim W J.

Microstructure and tensile properties of magnesium nanocomposites fabricated using magnesium chips and carbon black

[J]. J. Magnes. Alloy., 2020, 8: 860

[本文引用: 1]

Wu Z H, Qi Z C, Xu P P, et al.

Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets

[J]. Chin. J. Eng., 2020, 42: 620

[本文引用: 1]

吴宗河, 祁梓宸, 许朋朋.

热轧7075/AZ31B复合板的显微组织及结合性能

[J]. 工程科学学报, 2020, 42: 620

[本文引用: 1]

Lv H Y, Song D H, Zhou T, et al.

Effects of cyclic passes on micro-structure and properties of AZ31 magnesium alloy sheet rolled at high temperature

[J]. J. Netshape Form. Eng., 2019, 11(3): 117

[本文引用: 1]

吕胡缘, 宋登辉, 周 涛.

循环道次对高温叠轧AZ31镁合金板材组织与性能的影响

[J]. 精密成形工程, 2019, 11(3): 117

[本文引用: 1]

Huo P D, Li F, Wang Y, et al.

Formability and interface structure of Al/Mg/Al composite sheet rolled by hard-plate rolling (HPR)

[J]. Int. J. Adv. Manuf. Technol., doi: 10.1007/s00170-021-07178-0

[本文引用: 1]

Habila W, Azzeddine H, Mehdi B, et al.

Investigation of microstructure and texture evolution of a Mg/Al laminated composite elaborated by accumulative roll bonding

[J]. Mater. Charact., 2019, 147: 242

[本文引用: 1]

Tayyebi M, Rahmatabadi D, Adhami M, et al.

Manufacturing of high-strength multilayered composite by accumulative roll bonding

[J]. Mater. Res. Express, 2019, 6: 1265e6

[本文引用: 1]

Rahmatabadi D, Pahlavani M, Marzbanrad J, et al.

Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process

[J]. Proc. Inst. Mech. Eng., 2021, 235B: 1363

[本文引用: 1]

Xiao B Q, Song J F, Zhao H, et al.

Optimized tension for AZ31B thin sheets rolled with on-line heating rolling

[J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 227

[本文引用: 4]

Pan F S, Zeng B, Jiang B, et al.

Enhanced mechanical properties of AZ31B magnesium alloy thin sheets processed by on-line heating rolling

[J]. J. Alloys Compd., 2017, 693: 414

[本文引用: 4]

Pan F S, Zeng B, Jiang B, et al.

Deformation mechanism and microstructure evolution during on-line heating rolling of AZ31B Mg thin sheets

[J]. Mater. Charact., 2017, 124: 266

[本文引用: 1]

Xiao B Q, Song J F, Tang A T, et al.

Effect of pass reduction on distribution of shear bands and mechanical properties of AZ31B alloy sheets prepared by on-line heating rolling

[J]. J. Mater. Process. Technol., 2020, 280: 116611

[本文引用: 1]

Huang Y C, Xiao B Q, Song J F, et al.

Effect of tension on edge crack of on-line heating rolled AZ31B magnesium alloy sheet

[J]. J. Mater. Res. Technol., 2020, 9: 1988

[本文引用: 1]

Liu Q, Song J F, Pan F S, et al.

The edge crack, texture evolution, and mechanical properties of Mg-1Al-1Sn-Mn alloy sheets prepared using on-line heating rolling

[J]. Metals, 2018, 8: 860

[本文引用: 1]

Liu Q, Song J F, Zhao H, et al.

Microstructure and mechanical properties of Mg-6Al-1Sn-Mn sheets prepared by on-line heating rolling

[J]. J. Cent. South Univ. (Sci. Technol.), 2020, 51: 3159

[本文引用: 1]

刘 强, 宋江凤, 赵 华.

在线加热轧制Mg-6Al-1Sn-Mn板材显微组织及力学性能

[J]. 中南大学学报(自然科学版), 2020, 51: 3159

[本文引用: 1]

Jia Y H, Hou J, Wang H, et al.

Effects of an oscillation electromagnetic field on grain refinement and Al8Mn5 phase formation during direct-chill casting of AZ31B magnesium alloy

[J]. J. Mater. Process. Technol., 2020, 278: 116542

[本文引用: 1]

Jia Y H, Chen X R, Le Q C, et al.

Macro-physical field of large diameter magnesium alloy billet electromagnetic direct-chill casting: A comparative study

[J]. J. Magnes. Alloy., 2020, 8: 716

[本文引用: 1]

Le Q C, Jia Y H, Chen X R, et al.

A phase difference pulse magnetic field electromagnetic continuous casting method

[P]. Chin Pat, 201810270280.6, 2018

[本文引用: 1]

乐启炽, 贾永辉, 陈星瑞.

一种差相位脉冲磁场电磁连铸方法

[P]. 中国专利, 201810270280.6, 2018)

[本文引用: 1]

Le Q C, Hou J, Jia Y H, et al.

Casting device and method of crack-free large size magnesium alloy billet

[P]. Chin Pat, 201810303658.8, 2018

[本文引用: 1]

乐启炽, 侯 建, 贾永辉.

无裂纹大规格镁合金扁锭的铸造装置及方法

[P]. 中国专利, 201810303658.8, 2018)

[本文引用: 1]

Ding Y P, Zhu Q, Le Q C, et al.

Analysis of temperature distribution in the hot plate rolling of Mg alloy by experiment and finite element method

[J]. J. Mater. Process. Technol., 2015, 225: 286

[本文引用: 1]

Jia W T, Tang Y, Le Q C, et al.

Air-cooling analysis of AZ31B magnesium alloy plate: Experimental verification, numerical simulation and mathematical modeling

[J]. J. Alloys Compd., 2017, 695: 1838

Jia W T, Le Q C.

Heat-transfer analysis of AZ31B Mg alloys during single-pass flat rolling: Experimental verification and mathematical modeling

[J]. Mater. Des., 2017, 121: 288

[本文引用: 1]

Ning F K, Jia W T, Hou J, et al.

Construction of edge cracks pre-criterion model based on hot rolling experiment and simulation of AZ31 magnesium alloy

[J]. Mater. Res. Express, 2018, 5: 056528

[本文引用: 1]

Ning F K, Zhou X, Le Q C, et al.

Fracture and deformation characteristics of AZ31 magnesium alloy plate during tension rolling

[J]. Mater. Today Commun., 2020, 24: 101129

[本文引用: 1]

Jia W T, Le Q C, Tang Y, et al.

Role of pre-vertical compression in deformation behavior of Mg alloy AZ31B during super-high reduction hot rolling process

[J]. J. Mater. Sci. Technol., 2018, 34: 2069

[本文引用: 1]

Jia W T, Ning F K, Ding Y P, et al.

Role of pre-width reduction in deformation behavior of AZ31B alloy during break-down rolling and finish rolling

[J]. Mater. Sci. Eng., 2018, A720: 11

Jia W T, Tang Y, Ning F K, et al.

Optimum rolling speed and relevant temperature- and reduction-dependent interfacial friction behavior during the break-down rolling of AZ31B alloy

[J]. J. Mater. Sci. Technol., 2018, 34: 2051

[本文引用: 1]

Du Y Z, Liu D J, Ge Y F, et al.

Effects of deformation parameters on microstructure and texture of Mg-Zn-Ce alloy

[J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2658

[本文引用: 1]

Sutton S C, Luo A A.

Constitutive behavior and processing maps of a new wrought magnesium alloy ZE20 (Mg-2Zn-0.2Ce)

[J]. J. Magnes. Alloy., 2020, 8: 111

[本文引用: 2]

Ding X F, Zhao F Q, Shuang Y H, et al.

Characterization of hot deformation behavior of as-extruded AZ31 alloy through kinetic analysis and processing maps

[J]. J. Mater. Process. Technol., 2020, 276: 116325

Ramesh S, Anne G, Nayaka H S, et al.

Investigation of dry sliding wear properties of multi-directional forged Mg-Zn alloys

[J]. J. Magnes. Alloy., 2019, 7: 444

Hao M J, Cheng W L, Wang L F, et al.

Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression

[J]. J. Magnes. Alloy., 2020, 8: 899

[本文引用: 1]

Lim S C V, Yong M S.

Plane-strain forging of wrought magnesium alloy AZ31

[J]. J. Mater. Process. Technol., 2006, 171: 393

[本文引用: 1]

Ogawa N, Shiomi M, Osakada K.

Forming limit of magnesium alloy at elevated temperatures for precision forging

[J]. Int. J. Mach. Tools Manuf., 2002, 42: 607

[本文引用: 1]

Kang Y H, Huang Z H, Zhao H, et al.

Comparative study of hot deformation behavior and microstructure evolution of as-cast and extruded WE43 magnesium alloy

[J]. Metals, 2020, 10: 429

[本文引用: 1]

Najafi S, Mahmudi R.

Enhanced microstructural stability and mechanical properties of the Ag-containing Mg-Gd-Y alloys

[J]. J. Magnes. Alloy., 2020, 8: 1109

You C, Liu C M, Wan Y C, et al.

Dislocations-induced precipitates and their effect on mechanical properties of Mg-Gd-Y-Zr alloy

[J]. J. Magnes. Alloy., 2019, 7: 414

Kang Y H, Huang Z H, Wang S C, et al.

Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300oC

[J]. J. Magnes. Alloy., 2020, 8: 103

[本文引用: 1]

Madaj M, Greger M, Karas V.

Magnesium-alloy die forgings for automotive applications

[J]. Mater. Technol., 2015, 49: 267

[本文引用: 1]

Behrens B A, Schmidt I.

Improving the properties of forged magnesium parts by optimized process parameters

[J]. J. Mater. Process. Technol., 2007, 187-188: 761

[本文引用: 1]

Graf M, Ullmann M, Kawalla R.

Influence of initial state on forgeability and microstructure development of magnesium alloys

[J]. Procedia Eng., 2014, 81: 546

[本文引用: 1]

Chino Y, Mabuchi M, Shimojima K, et al.

Forging characteristics of AZ31 Mg alloy

[J]. Mater. Trans., 2001, 42: 414

[本文引用: 1]

Henry D, Turski M, Lyon P, et al.

An introduction to the forging of elektron®43—A high performance wrought magnesium alloy

[A]. Magnesium Technology 2014 [C]. Springer International Publishing, 2016: 281

[本文引用: 1]

Panigrahi S K, Yuan W, Mishra R S, et al.

A study on the combined effect of forging and aging in Mg-Y-RE alloy

[J]. Mater. Sci. Eng., 2011, A530: 28

[本文引用: 1]

Asqardoust S, Zarei-Hanzaki A, Fatemi S M, et al.

High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy

[J]. J. Alloys Compd., 2016, 669: 108

[本文引用: 1]

Matsumoto R, Kubo T, Osakada K.

Fracture of magnesium alloy in cold forging

[J]. CIRP Ann., 2007, 56: 293

[本文引用: 1]

Matsumoto R, Osakada K.

Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press

[J]. J. Mater. Process. Technol., 2010, 210: 2029

[本文引用: 1]

Zhu S Q, Yan H G, Chen J H, et al.

Effect of twinning and dynamic recrystallization on the high strain rate rolling process

[J]. Scr. Mater., 2010, 63: 985

[本文引用: 1]

Wang Q, Zhang Z M, Yu J M, et al.

A mould for back extrusion of hollow blank to form hollow parts

[P]. Chin Pat, 201710516964.5, 2017

[本文引用: 1]

王 强, 张治民, 于建民.

一种用于空心坯料反挤压成形空心件的模具

[P]. 中国专利, 201710516964.5, 2017)

[本文引用: 1]

Geng L Y, Wang Q, Yang Y B, et al.

Microstructure and mechanical properties of AZ80 magnesium alloy wheel hubs produced by extrusion process using hollow billet

[J]. Ordnance Mater. Sci. Eng., 2018, 41(2): 11

[本文引用: 1]

耿立业, 王 强, 杨勇彪.

基于空心坯料挤压AZ80镁合金轮毂组织与性能研究

[J]. 兵器材料科学与工程, 2018, 41(2): 11

[本文引用: 1]

Zeng J, Wang F H, Wei X X, et al.

A new constitutive model for thermal deformation of magnesium alloys

[J]. Metall. Mater. Trans., 2020, 51A: 497

[本文引用: 1]

Zeng J, Wang F H, Dong S, et al.

A new dynamic recrystallization kinetics model of cast-homogenized magnesium alloys

[J]. Metall. Mater. Trans., 2021, 52A: 316

Zeng J, Wang F H, Dong S, et al.

Optimization of hot backward extrusion process parameters for flat bottom cylindrical parts of Mg-8Gd-3Y alloy based on 3D processing maps

[J]. Int. J. Adv. Manuf. Technol., 2020, 108: 2149

[本文引用: 1]

Wang F H, Ni J M, Zeng J, et al.

A positive and negative extrusion mould and forming method

[P]. Chin Pat, 202011280551.X, 2020

[本文引用: 1]

王锋华, 倪加明, 曾 健.

一种正反挤压成形模具及成形方法

[P]. 中国专利, 202011280551.X, 2020)

[本文引用: 1]

Quan G F, Liu S D.

Application research on Mg alloy wheel hub prepared by super-plastic die forging

[J]. Ordnance Mater. Sci. Eng., 2012, 35(4): 22

[本文引用: 1]

权高峰, 刘绍东.

超塑性模锻镁合金汽车轮毂应用研究

[J]. 兵器材料科学与工程, 2012, 35(4): 22

[本文引用: 1]

Wang Q, Zhang Z M.

Investigation on backward extrusion of hollow billet with force saving

[J]. J. Plast. Eng., 2010, 17(3): 22

[本文引用: 1]

王 强, 张治民.

空心坯料反挤压省力成形方法及应用研究

[J]. 塑性工程学报, 2010, 17(3): 22

[本文引用: 1]

Wang Q, Zhang Z M, Zhang X, et al.

New extrusion process of Mg alloy automobile wheels

[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s599

Wang Q, Zhang Z M, Zhang X, et al.

Precision forging technologies for magnesium alloy bracket and wheel

[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: s205

[本文引用: 2]

Zhao X, Gao P C, Zhang Z M, et al.

Fatigue characteristics of the extruded AZ80 automotive wheel

[J]. Int. J. Fatigue, 2020, 132: 105393

[本文引用: 1]

Zhang H, Cui Z Z, Du Z H, et al.

Isothermal forming of gyroscope-brackets by numerical simulation and experiment

[J]. Aerosp. Mater. Technol., 2012, 42: 50

[本文引用: 1]

张 浩, 崔子振, 杜志惠.

高强耐热镁合金陀螺仪支架精密锻造工艺

[J]. 宇航材料工艺, 2012, 42(1): 50

[本文引用: 1]

Han X Z, Shan D B, Xu W C, et al.

Isothermal precision forging process of Mg-RE alloy component With high-tib and thin-web

[J]. Aerosp. Mater. Technol., 2013, 43(3): 60

[本文引用: 1]

韩修柱, 单德彬, 徐文臣.

高强韧稀土镁合金筋板类构件等温精锻工艺

[J]. 宇航材料工艺, 2013, 43(3): 60

[本文引用: 1]

Xu W C, Shan D B, Guo B, et al.

Isothermal forging rare element containing magnesium alloy bracket with thin web and high rib

[J]. J. Plast. Eng., 2014, 21(2): 7

[本文引用: 1]

徐文臣, 单德彬, 郭 斌.

稀土镁合金薄腹高筋支架的等温锻造技术

[J]. 塑性工程学报, 2014, 21(2): 7

[本文引用: 1]

Li L, Liu J C.

Isothermal forming of EW94 magnesium alloy thin-walled cone tube by the combination of forging and extrusion and its microstructure and properties

[J]. J. Plast. Eng., 2013, 20(5): 6

[本文引用: 1]

李 理, 刘建才.

等温锻-挤复合成形EW94镁合金薄壁锥管及其微结构与性能

[J]. 塑性工程学报, 2013, 20(5): 6

[本文引用: 1]

Miura H, Yu G, Yang X.

Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties

[J]. Mater. Sci. Eng., 2011, A528: 6981

[本文引用: 1]

Wu Y Z, Yan H G, Chen J H, et al.

Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates

[J]. Mater. Sci. Eng., 2012, A556: 164

[本文引用: 1]

Zhang J, Huang H.

Microstructure and mechanical properties of AZ31 alloy ring processed by hot forging

[J]. Mater. Sci. Technol., 2016, 32: 1043

[本文引用: 1]

Zhang J, Huang H, Yang C B.

Effects of hot ring forging on microstructure, texture and mechanical properties of AZ31 magnesium alloy

[J]. Mater. Sci. Eng., 2017, A679: 20

[本文引用: 1]

He C, Jiang B, Wang Q H, et al.

Effect of precompression and subsequent annealing on the texture evolution and bendability of Mg-Gd binary alloy

[J]. Mater. Sci. Eng., 2021, A799: 140290

[本文引用: 1]

He J J, Jiang B, Xu J, et al.

Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet

[J]. J. Alloys Compd., 2017, 723: 213

[本文引用: 1]

He J J, Jiang B, Yang Q S, et al.

Influence of pre-hardening on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet

[J]. J. Alloys Compd., 2015, 621: 301

He J J, Jiang B, Yang Q, et al.

Improved the anisotropy of extruded Mg-3Li-3Al-Zn alloy sheet by presetting grain re-orientation and subsequent annealing

[J]. J. Alloys Compd., 2016, 676: 64

[本文引用: 2]

He J J, Jiang B, Zhang J Y, et al.

Enhancement of mechanical properties and corrosion resistance of magnesium alloy sheet by pre-straining and annealing

[J]. Mater. Sci. Eng., 2015, A647: 216

He J J, Mao Y, Fu Y J, et al.

Improving the room-temperature formability of Mg-3Al-1Zn alloy sheet by introducing an orthogonal four-peak texture

[J]. J. Alloys Compd., 2019, 797: 443

[本文引用: 1]

He J J, Mao Y, Gao Y P, et al.

Effect of rolling paths and pass reductions on the microstructure and texture evolutions of AZ31 sheet with an initial asymmetrical texture distribution

[J]. J. Alloys Compd., 2019, 786: 394

He J J, Mao Y, Lu S L, et al.

Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling

[J]. Mater. Sci. Eng., 2019, A760: 174

[本文引用: 1]

He W J, Zeng Q H, Yu H H, et al.

Improving the room temperature stretch formability of a Mg alloy thin sheet by pre-twinning

[J]. Mater. Sci. Eng., 2016, A655: 1

Lee J U, Kim Y J, Kim S H, et al.

Texture tailoring and bendability improvement of rolled AZ31 alloy using {101¯2} twinning: The effect of precompression levels

[J]. J. Magnes. Alloy., 2019, 7: 648

[本文引用: 1]

Huang G S, Li H C, Song B, et al.

Tensile properties and microstructure of AZ31B magnesium alloy sheet processed by repeated unidirectional bending

[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 28

[本文引用: 2]

Huang G S, Xu W, Huang G J, et al.

Textural evolution of AZ31B magnesium alloy sheets undergoing repeated unidirectional bending at room temperature

[J]. J. Mater. Sci. Technol., 2009, 25: 365

[本文引用: 1]

Bo S, Huang G S, Li H C, et al.

Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending

[J]. J. Alloys Compd., 2010, 489: 475

[本文引用: 1]

Huang G S, Song B, Xu W, et al.

Structure and properties of AZ31B magnesium alloy sheets processed by repeatedly unidirectional bending at different temperatures

[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1815

[本文引用: 1]

Zhang L, Huang G S, Zhang H, et al.

Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending process

[J]. J. Mater. Process. Technol., 2011, 211: 644

[本文引用: 1]

Zhang H, Huang G S, Kong D Q, et al.

Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures

[J]. J. Mater. Process. Technol., 2011, 211: 1575

[本文引用: 1]

Huang G S, Zhang H, Gao X Y, et al.

Forming limit of textured AZ31B magnesium alloy sheet at different temperatures

[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 836

[本文引用: 1]

Huang G S, Zhang L, Song B, et al.

Cold stamping for AZ31B magnesium alloy sheet of cell phone house

[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s608

[本文引用: 1]

Han T Z, Huang G S, Wang Y G, et al Enhanced mechanical properties of AZ31

magnesium alloy sheets by continuous bending process after V-bending

[J]. Prog. Nat. Sci. Mater. Int., 2016, 26: 97

[本文引用: 4]

Han T Z, Huang G S, Wang Y G, et al.

Microstructure and formability evolutions of AZ31 magnesium alloy sheets undergoing continuous bending process

[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2043

[本文引用: 4]

Han T Z, Huang G S, Huang L, et al.

Influence of continuous bending process on texture evolution and mechanical properties of AZ31 magnesium alloy

[J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 225

[本文引用: 1]

/