Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (10): 1096-1100     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(10): 1096-1100 .

Download:  PDF(745KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A novel super cooled process for transient liquid phase (TLP) bonding is proposed, which is different from conventional TLP bonding in the following: the liquid interlayer is heated to a high temperature and held a few seconds, and then cooled to a low temperature and held a few minutes. Both two bonding temperatures are higher than the melting point of the interlayer. Owing to a fall of temperature, a super-cooling of composition is formed at the solid/liquid interface and the interfacial stabilities of the equilibrium solidification is broken, resulting in a cellular interface. After the completion of solidification, the interface disappears, and a seamless joint is produced. The experiment of the novel super cooled process is carried out using carbon steel as base metal and iron-nickel base amorphous alloy as interlayer, compared with that of conventional TLP bonding. A non-planar interface forms at the first stage and disappears at the finally stage during super cooled bonding, so a homogenous joint free of interface is produced. As the detrimental effect of interface on bond properties is avoided, the impact toughness of joint is improved by super cooled process, which reaches the base metal level.
Key words:  transient liquid phase bonding      super cooled      interface      low carbon steel      
Received:  26 January 2007     
ZTFLH:  TG457.11  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I10/1096

[1]Zhang G F,Zhang J X,Wang S Y,Qiu F X,Yang Y X. Weld Pipe Tube,2003;26(5):56 (张贵锋,张建勋,王士元,邱凤翔,杨永兴.焊管,2003;26(5):56)
[2]Zhang G F,Zhang J X.Elect Weld Mach,2006;36(1):37 (张贵锋,张建勋.电焊机,2006;36(1):37)
[3]Epelbaum C,Fontana M,Audebert F,Arcondo B.J Mater Sci,2005;40:4867
[4]Duvall D S,Owczarski W A,Paulonis D F.Weld J,1974; 53(4):203
[5]Zhou Y,Gale W F,North T H.Int Mater Rev,1995;40: 181
[6]Gale W F,Butts D A.Sci Technol Weld Join,2004;9: 283
[7]Rutter J W,Chalmers B.Can J Phys,1953;31:15
[8]Shirzadi A A,Wallach E R.Acta Mater,1999;47:3551
[9]Assadi H,Shirzadi A A,Wallach E R.Acta Mater,2001; 49:31
[10]Li X G,Wu J,Yan Q,Zhang X H,Wang X G.Chin Invent Pat,ZL02135336.0,2005 (李辛庚,吴军,严黔,张西鸿,王学刚.中国专刊,ZL02135336.0,2005)
[11]Wang X G,Yan Q,Li X G.Trans Chin Weld Inst,2005; 26(5):56 (王学刚,严黔,李辛庚.焊接学报,2005;26(5):56)
[12]Katoh M,Nishio K,Yamaguchi T.NDT E Int,2002;35: 263
[13]Tauh-Poku I,Dollar M,Massalaki T B.Metall Trans, 1988;19A:675
[14]Liu S,Olsen D L,Martin G P,Edwards G R.Weld J, 1991;70(8):207
[15]Li X H,Mao W,Guo W L,Xie Y H,Ye L,Cheng Y Y. Chin Weld,2005;14(1):19
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[8] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[9] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[10] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[11] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[12] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[13] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[14] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[15] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
No Suggested Reading articles found!