Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (10): 1085-1092     DOI:
Research Articles Current Issue | Archive | Adv Search |
Modeling of the Effects of Oxygen Content on Flow Patterns in A-Tig Welding
ZHAO Yuzhen; LEI Yongping; SHI Yaowu
School of Materials Science and Engineering; Beijing University of Technology; Beijing 100022
Cite this article: 

ZHAO Yuzhen; LEI Yongping; SHI Yaowu. Modeling of the Effects of Oxygen Content on Flow Patterns in A-Tig Welding. Acta Metall Sin, 2004, 40(10): 1085-1092 .

Download:  PDF(6123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A 3D mathematical model was developed to calculate the temperature and velocity distributions in a moving A-TIG weld pool with different oxygen concentrations. It is shown that the oxygen element, which changes the temperature dependence of surface tension coefficient from a negative value to a positive value, can cause significant changes in the weld penetration and depth/width ratio (D/W) of the weld pool. When the oxygen content increases, the weld bead penetration and $ D/W increases sharply while the weld metal width decreases. When oxygen content exceeds 150 10-6, the surface temperature decreases and then remains a constant. When the oxygen content increased beyond 200 10-6, the increase in oxygen content did not effect the weld pool size and shape. As the oxygen content is less than 300 10-6, negative and positive exist at the same time in the weld pool. The increase of oxygen content and the decrease of surface temperature can extend the region of positive surface tension coefficient and increase the depth of the pool. As the oxygen content exceed 300 10-6 the temperature at the maximum surface tension increases beyond the simulated maximum surface temperature, andis positive. Depending upon the oxygen concentrations, three, one, or two vortexes with different positions, strengths, and directions may be found in the weld pool. The contrary vortexes can efficiently transfer the thermal energy from the arc, creating a deep weld pool.
Key words:  A-TIG welding      oxygen content      surface tension      
Received:  14 August 2003     
ZTFLH:  TG401  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I10/1085

[1] Paskell T. Weld J, 1997; 4: 57
[2] Lucas W. Weld Met Fabr, 1996; 1: 11
[3] Anderson P C J. Weld Met Fabr, 1996; 3: 108
[4] Yang C L, Ushio M. Welding, 2000; 4: 16(杨春利,Ushio M.焊接,2000;4:16)
[5] Yang C L, Ushio M. Welding, 2000; 5: 15(杨春利,Ushio M.焊接,2000;5:15)
[6] Heiple C R, Roper J R. Weld J, 1982; 61(4) : 97
[7] Heiple C R, Roper J R. Weld J, 1983; 62(3) : 72
[8] Heiple C R, Roper J R. Weld J, 1981; 60(8) : 143
[9] Kou S, Sun D K. Metall Trans A, 1985; 16A(2) : 203
[10] Tsai N S, Eagar T W. Metall Trans B, 1985; 16B: 841
[11] Zacharia T, David S A. Weld J, 1989; 12: 499
[12] Zacharia T, David S A. Weld J, 1989; 12: 510
[13] Pitscheneder W, Debroy T, Mundra K, Ebner R. Weld J, 1996; 3: 71
[14] Wang Y, Shi Q, Tsai H L. Metall Trans B, 2001; 32B(2) :145
[15] Wang Y, Tsai H L. Metall Trans B, 2001; 32B(6) : 501
[16] Aidun D K, Martin S A. J Mater Eng Per/or, 1997; 6:496
[17] Bennon W D, Incropera F P. Int J Heat Mass Trans, 1987;30: 2161
[18] Sahoo P, Debroy T, Mcnallan M J. Metall Trans B, 1998;19B: 483
[19] Lu S P. Mater Trans, 2002; 11: 2926
[20] Hsieh R I, Pan Y T, Liou H Y. J Mater Eng Perfor, 1999;8(1) : 68
[21] Yang C L, Ushio M. Chin J Mech Eng, 2000; 10: 59(杨春利,Ushio M.机械工程学报,2000;10:59)
[22] Liu F Y, Lin S B, Yang C L. Trans China Weld Inst, 2002; 23(2) : 5(刘风尧,林三宝.焊接学报,2002;23(2) :5)
[23] Zhang R H, Fan D. J Gansu Univ Technol, 2002; 28(1) : 7(张瑞华,樊丁.甘肃工业大学学报,2002;28(1) :7)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] Xiaohua MIN, Li XIANG, Mingjia LI, Kai YAO, Satoshi EMURA, Congqian CHENG, Koichi TSUCHIYA. Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents[J]. 金属学报, 2018, 54(9): 1262-1272.
[3] XU Kuangdi. CERTAIN BASIC SUBJECTS ON CLEAN STEEL[J]. 金属学报, 2009, 45(3): 257-269.
[4] CHEN Xu LI Xiaogang DU Cuiwei LIANG Ping. CREVICE CORROSION BEHAVIOR OF THE STEEL X70 UNDER CATHODIC POLARIZATION[J]. 金属学报, 2008, 44(12): 1431-1438.
[5] Liu L M; Zhang Z D; Shen Y; Wang L. EFFECTS OF ACTIVATING FLUXES ON TIG WELDING OF MAGNESIUM ALLOY[J]. 金属学报, 2006, 42(4): 399-404 .
[6] CUI Chuanmeng; XU Xiuguang; ZHANG Xianpeng; WANG Kuihan; HAN Weiru (Northeastern University; Shenyang 110006). EFFECT OF COMPOSITION OF B_2O_3-MgO-SiO_2-Al_2O_3-CaO SLAG SYSTEM ON PHYSICAL PROPERTIES OF MELT[J]. 金属学报, 1996, 32(6): 637-641.
[7] DIA O Risheng(Panzhihua Institute of Iron and Steel Research; Panzhihua 617000). DETECTION OF SURFACE TENSION OF TITANIFEROUS SLAG AND ITS RELATION TO ION-CLUSTER STRUCTURE MODEL[J]. 金属学报, 1995, 31(18): 247-250.
[8] WANG Jingtang;PANG Dexing;DING Bingzhe;BIAN Maoshu;LI Shuling Institute of Metal Research; Academia Sinica; Shenyang. TEMPERATURE DEPENDENCE UPON VISCOSITY OF Ni-P ALLOY ON AMORPHOUS FORMATION[J]. 金属学报, 1988, 24(5): 444-447.
[9] BIAN Maoshu Associate Professor;Institute of Metal Research;Academia Sinica;Shenyang;CHEN Qiu;WANG Jingtang Institute of Metal Research; Academia Sinica; Shenyang. DENSITY SURFACE TENSION WETTABILITY AND ADHESIVE POWER OF LIQUID Al AND Al-RE ALLOY ON BN SURFACE[J]. 金属学报, 1988, 24(2): 207-209.
[10] YANG Zupan Professor;Laboratory of Metallurgical Physical Chemistry;Northeast University of Technology;Shenyang;WU Keng;HUANG Zhenqi Northeast University of Technology; Shenyang. SURFACE TENSION OF BLAST FURNACE TYPE SLAGS CONTAINING TITANIUM OXIDES[J]. 金属学报, 1988, 24(2): 210-213.
No Suggested Reading articles found!