|
|
Modeling of the Effects of Oxygen Content on Flow Patterns in A-Tig Welding |
ZHAO Yuzhen; LEI Yongping; SHI Yaowu |
School of Materials Science and Engineering; Beijing University of Technology; Beijing 100022 |
|
Cite this article:
ZHAO Yuzhen; LEI Yongping; SHI Yaowu. Modeling of the Effects of Oxygen Content on Flow Patterns in A-Tig Welding. Acta Metall Sin, 2004, 40(10): 1085-1092 .
|
Abstract A 3D mathematical model was developed to calculate the temperature and
velocity distributions in a moving A-TIG weld pool with different oxygen
concentrations. It is shown that the oxygen element, which changes the
temperature dependence of surface tension coefficient
from a negative value to a positive value,
can cause significant changes in the weld penetration and depth/width
ratio (D/W) of the weld pool. When the oxygen content increases,
the weld bead penetration and $ D/W increases sharply while the weld
metal width decreases. When oxygen
content exceeds 150 10-6, the surface temperature decreases
and then remains a constant. When the oxygen content increased beyond
200 10-6, the increase in oxygen content did not effect
the weld pool size and shape. As the oxygen content is less than
300 10-6, negative and positive
exist at the same time in the weld pool. The increase of oxygen
content and the decrease of surface temperature can extend the region
of positive surface tension coefficient and increase the depth of the
pool. As the oxygen content exceed 300 10-6 the temperature
at the maximum
surface tension increases beyond the simulated maximum surface
temperature, andis positive.
Depending upon the oxygen concentrations, three, one, or two vortexes
with different positions, strengths, and directions may be found
in the weld pool. The contrary vortexes can efficiently transfer the
thermal energy from the arc, creating a deep weld pool.
|
Received: 14 August 2003
|
|
[1] Paskell T. Weld J, 1997; 4: 57 [2] Lucas W. Weld Met Fabr, 1996; 1: 11 [3] Anderson P C J. Weld Met Fabr, 1996; 3: 108 [4] Yang C L, Ushio M. Welding, 2000; 4: 16(杨春利,Ushio M.焊接,2000;4:16) [5] Yang C L, Ushio M. Welding, 2000; 5: 15(杨春利,Ushio M.焊接,2000;5:15) [6] Heiple C R, Roper J R. Weld J, 1982; 61(4) : 97 [7] Heiple C R, Roper J R. Weld J, 1983; 62(3) : 72 [8] Heiple C R, Roper J R. Weld J, 1981; 60(8) : 143 [9] Kou S, Sun D K. Metall Trans A, 1985; 16A(2) : 203 [10] Tsai N S, Eagar T W. Metall Trans B, 1985; 16B: 841 [11] Zacharia T, David S A. Weld J, 1989; 12: 499 [12] Zacharia T, David S A. Weld J, 1989; 12: 510 [13] Pitscheneder W, Debroy T, Mundra K, Ebner R. Weld J, 1996; 3: 71 [14] Wang Y, Shi Q, Tsai H L. Metall Trans B, 2001; 32B(2) :145 [15] Wang Y, Tsai H L. Metall Trans B, 2001; 32B(6) : 501 [16] Aidun D K, Martin S A. J Mater Eng Per/or, 1997; 6:496 [17] Bennon W D, Incropera F P. Int J Heat Mass Trans, 1987;30: 2161 [18] Sahoo P, Debroy T, Mcnallan M J. Metall Trans B, 1998;19B: 483 [19] Lu S P. Mater Trans, 2002; 11: 2926 [20] Hsieh R I, Pan Y T, Liou H Y. J Mater Eng Perfor, 1999;8(1) : 68 [21] Yang C L, Ushio M. Chin J Mech Eng, 2000; 10: 59(杨春利,Ushio M.机械工程学报,2000;10:59) [22] Liu F Y, Lin S B, Yang C L. Trans China Weld Inst, 2002; 23(2) : 5(刘风尧,林三宝.焊接学报,2002;23(2) :5) [23] Zhang R H, Fan D. J Gansu Univ Technol, 2002; 28(1) : 7(张瑞华,樊丁.甘肃工业大学学报,2002;28(1) :7) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|