Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 923-928     DOI:
Research Articles Current Issue | Archive | Adv Search |
MODELING OF SOLIDIFICATION PROCESS OF THE GAS-ATOMIZED Cu-13.5%Sn ALLOY DROPLETS
WANG Xiaofeng; ZHAO Jiuzhou; He Jie; WANG Jiangtao
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

WANG Xiaofeng; ZHAO Jiuzhou; He Jie; WANG Jiangtao. MODELING OF SOLIDIFICATION PROCESS OF THE GAS-ATOMIZED Cu-13.5%Sn ALLOY DROPLETS. Acta Metall Sin, 2005, 41(9): 923-928 .

Download:  PDF(231KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the population dynamic method a model has been developed to describe the solidification process and the thermal histories of gas-atomized droplets. The model is coupled with the droplets' heat transfer controlling equation and the droplets' motion controlling equation, and used in Cu-13.5%Sn (mass fraction) alloy. The effects of the droplet size, the initial gas velocity, the superheat of the melt and the wetting angle between the primary phase and the catalyzing substrate for heterogeneous nucleation on droplet solidification behaviors were discussed.
Key words:  Cu-13.5%Sn alloy      spray forming      population dynamics      
Received:  24 March 2005     
ZTFLH:  TG244,TB115  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/923

[1] Singer A R E. Mater Sci Eng, 1991; A135: 246
[2] Grant P S. Prog Mater Sci, 1995; 39: 497
[3] Fan H B, Cao F Y, Cui C S, Jiang Z L, Li Q C. Chin J Nonferrous Met, 1998; 8: 431 (范洪波,曹福洋,崔成松,蒋祖龄,李庆春.中国有色金属学 报,1998;8:431)
[4] Zhang J S, Liu X J, Cui H, Duan X J, Sun Z Q, Chen G L. Metall Mater Trans, 1997; 28A: 1261
[5] Yang L, Chen L J, Liu Z, Zhao J Z, Zhang Y C, Ye H Q. J Mater Sci Lett, 2003; 22: 45
[6] Xiong B Q, Zhang Y A, Lin Y J, Zhang S M, Shi L K. Trans Nonferrous Met Soc Chin, 1999; 9: 302
[7] Liu Y, Guo S, Liu Z M, Du Y, Huang B Y, Huang J S, Chen S Q, Liu F X. Z Metallkd, 2005; 96: 83
[8] Kim H J, Lee J K, Shin S Y, Jeong H G, Kim D H, Bae J C. Intermatallics, 2004; 12: 1109
[9] Zambon A, Bedpan B. Mater Sci Eng, 2004; A375: 638
[10] Kiminami C S, Basim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. Adv Powder Technol Ⅱ: Key Eng Mater, 2001; 189(1): 503
[11] Afonso C R M, Bolfarini C, Kiminami C S, Bassim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. J Non-Cryst Solids, 2001; 284: 134
[12] Golumbfskie W J, Amateau M F, Eden T J, Wang J G, Liu Z K. Acta Mater, 2003; 51: 5199
[13] Liu D M, Zhao J Z, Ye H Q. Acta Metall Sin, 2004; 40: 873 (刘东明,赵九洲,叶恒强.金属学报,2004;40:873)
[14] Grant P S, Cantor B, Katgerman L. Acta Metall Mater, 1993; 41: 3097
[15] Liu D M, Zhao J Z, Ye H Q. Acta Metall Sin, 2003; 39: 375 (刘东明,赵九洲,叶恒强.金属学报, 2003;39:375)
[16] Xu Q, Lavernia E J. Acta Mater, 2001; 49: 3849
[17] Cantor B, Baik K H, Grant P S. Prog Mater Sci,1997; 42: 373
[18] Mathur P, Apelian D, Lawley A. Acta Metall, 1989; 37: 429
[19] Seok H K, Lee H C, Oh K H, Lee J C, Lee H I, Ra H Y. Mater Trans, 2000; 31A: 1479
[20] Fu X W, Zhang J S, Sun Z Q. Acta Metall Sin, 1999; 35: 147 (傅晓伟,张济山,孙祖庆.金属学报, 1999;35:147)
[21] Cai W D, Lavernia E J. Metall Mater Trans, 1998; 29B: 1085
[22] Liu D M, Zhao J Z, Ye H Q. Mater Sci Eng, 2004; A372: 229
[23] Zhao J Z, Drees S, Ratke L. Mater Sci Eng, 2000; A282: 262
[24] Zhao J Z, Ratke L, Feuerbacher B. Modell Simul Mater Sci Eng, 1998; 6: 123
[25] Porter D A, Easterling K E. Phase Transformations in Metals and Alloys. New York: Van Nostrand Reinhold ComDanv, 1981: 193
[26] Liu B C, Jing T. Numerical Simulation and Quality Control for Casting Engineering. Beijing: China Machine Press, 2001: 167 (柳百成,荆 涛.铸造工程的模拟仿真与质量控制.北京:机 械工业出版社,2001:167)
[27] Ranz W E, Marshall W R. Chem Eng Prog, 1952; 48: 141, 173
[28] Lu Q Q, Fontain J R, Aubertin G. Int J Heat Mass Transfer, 1993; 36: 79
[29] Clif R, Grace J R, Weber M E. Bubbles, Drops and Particles. New York: Academic Press, 1978: 111
[30] Tiedje N, Hansen P N, Pedersen A S. Metall Mater Trans, 1996; 27A: 4085
[31] Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980: 59
[32] Massalski T B. Binary Alloy Phase Diagrams. 2nd ed., Materials Park, Ohio: ASM International, 1990: 14
[1] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[2] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[3] TIAN Tian, HAO Zhibo, JIA Chonglin, GE Changchun. Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L[J]. 金属学报, 2019, 55(10): 1260-1272.
[4] ZHANG Jinxiang, HUANG Jinfeng, WANG Hebin, LU Lin, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SPRAY FORMED H13 TOOL STEEL[J]. 金属学报, 2014, 50(7): 787-794.
[5] SU Ruiming, QU Yingdong, LI Rongde. PRE-AGING OF RETROGRESSION AND RE-AGING OF SPRAY FORMED 7075 ALLOY[J]. 金属学报, 2014, 50(7): 863-870.
[6] WANG Hebin, HOU Longgang, ZHANG Jinxiang, LU Lin, YU Yipeng, CUI Hua, ZHANG Jishan. MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL[J]. 金属学报, 2014, 50(12): 1421-1428.
[7] YUAN Hao, FAN Junfei, REN Sanbing, WANG Haowei, ZHANG Yijie. THREE—DIMENSIONAL MATHEMATICAL SHAPE MODEL AND PROCESS RESEARCH OF SPRAY—FORMED BILLET[J]. 金属学报, 2013, 49(12): 1532-1542.
[8] XU Yi, HUANG Peng, SHU Qin, GUO Biao, SUN Chuanshui. MICROSTRUCTURE AND PROPERTY OF ISOTHERMAL FORGED SPRAY FORMING FGH4095 SUPERALLOY[J]. 金属学报, 2013, 49(11): 1399-1405.
[9] YU Yipeng HUANG Jinfeng CUI Hua CAI Yuanhua ZHANG Jishan. EFFECT OF Nb ON THE MICROSTRUCTURE AND PROPERTIES OF SPRAY FORMED M3 HIGH SPEED STEEL[J]. 金属学报, 2012, 48(8): 935-940.
[10] CAI Yuanhua LIANG Ruiguang SU Zhanpei ZHANG Jishan. HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURAL STABILITY OF SPRAY FORMED Al-22Si-5Fe ALLOY[J]. 金属学报, 2010, 46(7): 814-820.
[11] zhiguang Liu; Lihua CHAI; yuyong chen. DEVELOPMENT OF RAPIDLY SOLIDIFIED TITANIUM ALUMINIDE COMPOUNDS[J]. 金属学报, 2008, 44(5): 569-573 .
[12] ;. Microstructure and mechanical properties of spray-formed AZ91 alloy[J]. 金属学报, 2007, 42(1): 23-26 .
[13] JI Gang; T.GROSDIDIER; HAO Shengzhi; LIAO Hanlin; DONG Chuang. Microstructure and Thermal Stability of HVOF Spray Formed FeAl Thick Nanocoating[J]. 金属学报, 2005, 41(6): 561-567 .
[14] ZHANG Jishan;CUI Hua; DUAN Xianjin; SUN Zuqing; CHEN Guoliang (State Key Laboratory of Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083). SIMULATION OF SOLIDIFICAFION BEHAVIOR IN SPRAY DEPOSITED PREFORM Ⅱ.Calculation Results For Al-Cu Alloy[J]. 金属学报, 1998, 34(1): 13-18.
[15] ZHANG Jishan; CUI Hua; DUAN Xianjin; SUN Zuqing; CHEN Guoliang (State Key Laboratory of Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083). SIMULATION OF SOLIDIFICATION BEHAVIOR IN SPRAY DEPOSITED PREFORMⅠ. Theoretical Analysis[J]. 金属学报, 1998, 34(1): 7-12.
No Suggested Reading articles found!