|
|
First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys |
MENG Xianglong1, LIU Ruiliang1( ), Li D. Y.2( ) |
1 Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9 |
|
Cite this article:
MENG Xianglong, LIU Ruiliang, Li D. Y.. First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys. Acta Metall Sin, 2025, 61(5): 797-808.
|
Abstract Tantalum and its alloys have high melting points and good wear resistance, which are primarily used in fields such as the aerospace and nuclear energy industry. Surface modification techniques such as carburization can be used to obtain a modified layer containing tantalum carbide on the surface of tantalum and its alloys, thereby significantly improving their surface properties. However, the structure and properties of tantalum carbide precipitated on the surface of different tantalum alloys remain unclear. This study focuses on Ta-Mo and Ta-W alloys, and constructs fcc and hcp complex tantalum carbide (Ta, M)C (M = Mo, W) models with different alloying elements and their contents. The energy and mechanical properties of different complex tantalum carbide structures were calculated using the first principles method based on the density functional theory to explore the strengthening and toughening mechanisms of complex tantalum carbides. Calculation results indicate that when the content of Mo and W is less than 50%, fcc structured complex tantalum carbide can be easily formed, and the higher the concentration of Mo and W atoms, the lower the modulus and hardness of the complex tantalum carbide with an fcc structure, and the better the toughness. When the content of Mo and W exceeds 50%, tantalum carbides with an hcp structure are easy to form. As the concentration of Mo and W atoms increases, the modulus and hardness of complex tantalum carbides with an hcp structure increase, whereas the toughness decreases.
|
Received: 27 March 2024
|
|
Fund: National Natural Science Foundation of China(52371060);Natural Science Foundation of Heilongjiang Province(LH2023E060);Fundamental Research Funds for the Central Universities(3072023WD010) |
Corresponding Authors:
LIU Ruiliang, professor, Tel: (0451)82518731, E-mail: liuruiliang@hrbeu.edu.cn; D. Y. Li, Tel: (0451)82518731, E-mail: dongyang.li@ualberta.ca
|
1 |
Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors [J]. J. Electrochem. Soc., 2003, 150: A292
|
2 |
Mani G, Porter D, Grove K, et al. A comprehensive review of biological and materials properties of tantalum and its alloys [J]. J. Biomed. Mater. Res., 2022, 110A: 1291
|
3 |
Massot L, Chamelot P, Taxil P. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate [J]. J. Alloys Compd., 2006, 424: 199
|
4 |
Wang Z H. Advances on surface treatment process of tantalum [J]. Heat Treat. Met., 2024, 49: 259
|
|
王哲昊. 金属钽表面处理工艺进展 [J]. 金属热处理, 2024, 49: 259
|
5 |
Carette L, Jacquet P, Cotton D, et al. (TaC/Ta2C) bilayer formed on carburized and annealed tantalum; development of a numerical growth model [J]. Appl. Surf. Sci., 2019, 467-468: 84
|
6 |
Zhao Z Y, Cao L, Liang F, et al. A new strategy for preparing carbide coatings on easily oxidized tantalum by non-vacuum carburizing: Fe-coating-mediated carburization [J]. Vacuum, 2024, 221: 112951
|
7 |
Tang Q H, Zhuang X L, Fang J F, et al. Surface carburising of tantalum and its alloys [J]. Rare. Met., 1991, (2): 116
|
|
唐全红, 庄祥麟, 方金法 等. 钽及其合金的表面渗碳强化 [J]. 稀有金属, 1991, (2): 116
|
8 |
Zheng X. Surface treatment to improve the corrosion resistance of tantalum [J]. Rare. Met. Lett., 2002, (4): 21
|
|
郑 欣. 提高钽耐蚀性的表面处理法 [J]. 稀有金属快报, 2002, (4): 21
|
9 |
Zhou H L, Hu Y, Zhu K W, et al. Surface modification of tantalum sheets by methane plasma carburizing [J]. Chin. J. Vac. Sci. Technol., 2018, 38A: 48
|
|
周寰林, 胡 殷, 朱康伟 等. 钽表面的甲烷等离子渗碳改性技术研究 [J]. 真空科学与技术学报, 2018, 38: 48
|
10 |
Zhou H L. Study of ionic carburisation modification of tantalum surfaces [D]. Mianyang: China Academy of Engineering Physics, 2017
|
|
周寰林. 钽表面离子渗碳改性研究 [D]. 绵阳: 中国工程物理研究院, 2017
|
11 |
Li J, Yan X D, Yang Y, et al. Vacuum carburization process of Ta and Ta-W alloys [J]. Chin. J. Rare Met., 2018, 42: 925
|
|
李 佳, 闫晓东, 杨 银 等. Ta及Ta-W合金真空渗碳工艺研究 [J]. 稀有金属, 2018, 42: 925
|
12 |
Hui P F. Microstructure and properties of carbide coatings on metal (Ta, Mo, Ti6Al4V) surface prepared by interstitial carburization [D]. Xi'an: Xi'an University of Technology, 2019
|
|
惠鹏飞. 间隙原子渗碳法制备金属(Ta、Mo、Ti6Al4V)表面碳化层的组织和性能研究 [D]. 西安: 西安理工大学, 2019
|
13 |
Zhang C, Yin H Q, Du Y, et al. Thermodynamic modeling of the Ta-Mo-C ternary system [J]. Calphad, 2017, 59: 99
|
14 |
Frisk K. A thermodynamic analysis of the Ta-W-C and the Ta-W-C-N systems [J]. Int. J. Mater. Res., 1999, 90: 704
|
15 |
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films [J]. Nature, 2003, 422: 506
|
16 |
Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides [J]. Adv. Funct. Mater., 2013, 23: 2185
|
17 |
Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7
pmid: 30478375
|
18 |
Liu R L, Li D Y. Electron work function as an indicator for tuning the bulk modulus of MC carbide by metal-substitution: A first-principles computational study [J]. Scr. Mater., 2021, 204: 114148
|
19 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
20 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
|
21 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
22 |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
|
23 |
Liu Z T Y, Gall D, Khare S V. Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides [J]. Phys. Rev., 2014, 90B: 134102
|
24 |
Yang Y, Wang W, Gan G Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation [J]. Phys. Rev., 2018, 550B: 163
|
25 |
Tasnádi F, Odén M, Abrikosov I A. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence [J]. Phys. Rev., 2012, 85B: 144112
|
26 |
Hossain M D, Borman T, Kumar A, et al. Carbon stoichiometry and mechanical properties of high entropy carbides [J]. Acta Mater., 2021, 215: 117051
|
27 |
Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Phys. Rev., 2007, 76B: 054115
|
28 |
Shi Y J, Du Y L, Chen G. First-principles study on the elastic and electronic properties of hexagonal ε-Fe3N [J]. Comput. Mater. Sci., 2013, 67: 341
|
29 |
Hill R. The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
|
30 |
Chen X Q, Niu H Y, Li D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19: 1275
|
31 |
Van De Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: A user guide [J]. Calphad, 2002, 26: 539
|
32 |
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
pmid: 10042897
|
33 |
Mattheiss L F, Hamann D R. Bulk and surface electronic structure of hexagonal WC [J]. Phys. Rev., 1984, 30B: 1731
|
34 |
Yu X X, Weinberger C R, Thompson G B. Ab initio investigations of the phase stability in tantalum carbides [J]. Acta Mater., 2014, 80: 341
|
35 |
Liu R L, Zhang D, Tang Y Q, et al. (W1 - x, Mx ) C carbides with desired combinations of compatible density and properties—A first-principles study [J]. J. Am. Ceram. Soc., 2021, 104: 4239
|
36 |
Edström D, Sangiovanni D G, Hultman L, et al. Elastic properties and plastic deformation of TiC- and VC-based pseudobinary alloys [J]. Acta Mater., 2018, 144: 376
|
37 |
Zhao S J. Defect energetics and stacking fault formation in high-entropy carbide ceramics [J]. J. Eur. Ceram. Soc., 2022, 42: 5290
|
38 |
Shao L, Jiang H H, Xu C R, et al. The lattice distortion, mechanical and thermodynamic properties of A(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 (A = Sr, Ba) high-entropy perovskite with B-site disorder: First principles prediction [J]. Mater. Des., 2022, 224: 111308
|
39 |
Blakemore J S. Solid State Physics [M]. Cambridge: Cambridge University Press, 1985: 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|