Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (3): 325-331    DOI: 10.11900/0412.1961.2018.00107
Current Issue | Archive | Adv Search |
PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film
Dongyu HE(),Yuxin LIU
National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
Cite this article: 

Dongyu HE,Yuxin LIU. PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film. Acta Metall Sin, 2019, 55(3): 325-331.

Download:  HTML  PDF(15612KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In ferroelectrics, the presence of domain structures and switchable polarization plays an important role in ferroelectric performance and the design of future electronic devices. Understanding domain behaviors is crucial for ferroelectrics promising applications, particularly in nonvolatile memory, microwave ceramics, electromechanical sensors and actuators. As a convenient, nondestructive and high-resolution technique, the piezoresponse force microscopy (PFM) provides a powerful method for observing domain structures and their dynamic behavior at the micron and nanometer scales. In this work, PFM has been used to study the domain structures and their dynamic behavior of 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film. Both the a domain and the c domain coexist in the ferroelectric thin film nanometer grains. Under the tip-bias-induced electric field, the domain switching follows the two 90° steps of 180° domain switching, showing the domain polarization change from c to a to c. A remarkable effect of temperature on the domain configurations and domain dynamic response in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film was found by PFM. Under the tip bias voltage of 5 V, domain evolution was more rapid with a higher temperature at 70 ℃. The surface charge is related with c domain polarization. At high temperature, the surface charge induced effective electric filed increases, allowing for the easier domain motion.

Key words:  0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 ferroelectric thin film      PFM      90° step-by-step domain switching      temperature effect      effective electric field     
Received:  21 March 2018     
ZTFLH:  O487  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00107     OR     https://www.ams.org.cn/EN/Y2019/V55/I3/325

Fig.1  Schematics of temperature control and the experimental process (a) and heatable sample plate (b) (PFM—piezoresponse force microscopy)
Fig.2  Nanostructure of 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film surface topography (a) and PFM image (b)
Fig.3  PFM images of domain switching on 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 ferroelectric thin film showing domain evolution with a tip electric field applied to the sample for 0 min (a), 16 min (b) and 36 min (c) (The marked areas showing the same areas)
Fig.4  The c- domain area portion dependence on scanning time at 28 and 70 ℃ at the tip bias voltage of 5 V
Fig.5  The c- domain area portion dependence on scanning time at the tip bias voltages of 5 and 8 V
Fig.6  PFM images of the 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film at 28 ℃ (a), 50 ℃ (b), 70 ℃ (c) and 90 ℃ (d)
Fig.7  Variation of piezoresponse (PR) contrast of the 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film with temperature
Fig.8  Schematics of the three domain switching models(a) new 180° domain nucleation and extension model(b) original domain degradation and the new 180° domain nucleation model(c) 90° step-by-step domain switching model
[1] Fu C L. Ferroelectric Thin Film and its Application [M]. Beijing: Science Press, 2009: 23
[1] 符春林. 铁电薄膜材料及其应用 [M]. 北京: 科学出版社, 2009: 23
[2] Khan M A, Caraveo-Frescas J A, Alshareef H N. Hybrid dual gate ferroelectric memory for multilevel information storage [J]. Org. Electron., 2015, 16: 9
[3] Scott J F, translated by Zhu J S. Ferroelectric Memories [M]. Beijing: Tsinghua Press, 2004: 30
[3] Scott J F著, 朱劲松译. 铁电存储器 [M]. 北京: 清华大学出版社, 2004: 30
[4] Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides [J]. Rev. Mod. Phys., 2005, 77: 1083
[5] Jang H W, Ortiz D, Baek S H, et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films [J]. Adv. Mater., 2009, 21: 817
[6] Zhong W L. Ferroelectric Physics [M]. Beijing: Science Press, 1996: 45
[6] 钟维烈. 铁电体物理学 [M]. 北京: 科学出版社, 1996: 45
[7] Liu D, Ma C G, Luo H S, et al. Nanoscale insight into the domain structures of high Curie point Pb(In1/2Nb1/2)O3-PbTiO3 single crystal [J]. J. Alloys Compd., 2017, 696: 166
[8] Reichenberg B, Tiedke S, Szot K, et al. Contact mode potentiometric measurements with an atomic force microscope on high resistive perovskite thin films [J]. J. Eur. Ceram. Soc., 2005, 25: 2353
[9] Rocha L S R, Cavalcanti C S, Amoresi R A C, et al. A study approach on ferroelectric domains in BaTiO3 [J]. Mater. Charact., 2016, 120: 257
[10] Bai C L, Tian F, Luo K. Scanning Force Microscopy [M]. Beijing: Science Press, 2000: 7
[10] 白春礼, 田 芳, 罗 克. 扫描力显微术 [M]. 北京: 科学出版社, 2000: 7
[11] Zhao K Y, Zhao W, Zeng H R, et al. Tip-bias-induced domain evolution in PMN-PT transparent ceramics via piezoresponse force microscopy [J]. Appl. Surf. Sci., 2015, 337: 125
[12] Zeng H R, Shimamura K, Villora E G, et al. Domain growth kinetics and wall strain behavior in BaMgF4 ferroelectric crystal by piezoresponse force microscopy [J]. J. Appl. Phys., 2007, 101: 074109
[13] Rodriguez B J, Nemanich R J, Kingon A, et al. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy [J]. Appl. Phys. Lett., 2005, 86: 012906
[14] Wada S, Kakemoto H, Tsurumi T. Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering [J]. Mater. Trans., 2004, 45: 178
[15] Zhao H Q, Wang J O, Sun C, et al. Multiferroics and electronic structure of (1-x)PbTiO3-xBi(Ni1/2Ti1/2)O3 thin films [J]. Thin Solid Films, 2013, 542: 155
[16] Jiang B, Bai Y, Chu WY, et al. Direct observation on two 90o steps of 180o domain switching in BaTiO3 single crystal under antiparallel electric field [J]. Appl. Phys. Lett., 2008, 93: 152905
[17] Gaynutdinov R V, Mitko S, Yudin S G, et al. Polarization switching at the nanoscale in ferroelectric copolymer thin films [J]. Appl. Phys. Lett., 2011, 99: 142904
[18] Anthoniappen J, Chang W S, Soh A K, et al. Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy [J]. Acta. Mater., 2017, 132: 174
[19] Yuan G L, Chen J P, Xia H, et al. Ferroelectric domain evolution with temperature in BaTiO3 film on (001) SrTiO3 substrate [J]. Appl. Phys. Lett., 2013, 103: 062903
[20] Zhu Z, Zhu W M. The effect of annealing temperature on the morphology and piezoelectric characteristics of BaTiO3 nanofibers and domain switching under different temperatures [J]. Curr. Appl. Phys., 2018, 18: 886
[21] Huang C W, Chen Z H, Chen L. Thickness-dependent evolutions of domain configuration and size in ferroelectric and ferroelectric-ferroelastic films [J]. J. Appl. Phys., 2013, 113: 094101
[22] Catalan G, Seidel J, Ramesh R, et al. Domain wall nanoelectronics [J]. Rev. Mod. Phys., 2012, 84: 119
[23] Chen J, Sun X Y, Deng J X, et al. Structure and lattice dynamics in PbTiO3-Bi(Zn1/2Ti1/2)O3 solid solutions [J]. J. Appl. Phys., 2009, 105: 044105
[24] Wang J H, Chen C Q. A coupled analysis of the piezoresponse force microscopy signals [J]. Appl. Phys. Lett., 2011, 99: 171913
[25] Liu D, Tian C Y, Ma C G, et al. Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions by piezoresponse force microscopy [J]. Scr. Mater., 2016, 123: 64
[26] Shin S, Baek J, Hong J W, et al. Deterministic domain formation observed in ferroelectrics by electrostatic force microscopy [J]. J. Appl. Phys., 2004, 96: 4372
[27] Zhao H, Wu P P, Du L F, et al. Effect of the nanopore on ferroelectric domain structures and switching properties [J]. Comput. Mater. Sci., 2018, 148: 216
[28] Shur V Y, Shikhova V A, Ievlev A V, et al. Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals [J]. J. Appl. Phys., 2012, 112: 064117
[29] He D Y, Qiao L J, Volinsky A A, et al. Electric field and surface charge effects on ferroelectric domain dynamics in BaTiO3 single crystal [J]. Phys. Rev., 2011, 84B: 024101
[1] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[2] HUANG Hefei, LI Jianjian, LIU Renduo, CHEN Huaican, YAN Long. TEMPERATURE EFFECT OF Xe ION IRRADIATION TO 316 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1189-1194.
[3] QIAN Yourong;HE Xiangdong Beijing University of Aeronautics and Astronautics QIAN Yourong; Department of Materials Science and Engineering; Boiling University of Aeronautics and Astronautics; BeilinK 100083. TEMPERATURE EFFECT AND OVERLOAD RETARDATION EFFECT ON CORROSION FATIGUE CRACK GROWTH OF HIGH STRENGTH STEEL[J]. 金属学报, 1989, 25(6): 60-64.
No Suggested Reading articles found!