Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (4): 419-425    DOI: 10.11900/0412.1961.2015.00288
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCE OF MELT SUPERHEATING TREATMENT TEMPERATURE ON SOLUTE DISTRIBUTION BEHAVIOR OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Haifeng WANG,Haijun SU,Jun ZHANG(),Taiwen HUANG,Lin LIU,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Haifeng WANG,Haijun SU,Jun ZHANG,Taiwen HUANG,Lin LIU,Hengzhi FU. INFLUENCE OF MELT SUPERHEATING TREATMENT TEMPERATURE ON SOLUTE DISTRIBUTION BEHAVIOR OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall Sin, 2016, 52(4): 419-425.

Download:  HTML  PDF(658KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solute partition coefficient plays an important role in determining the microstructure and mechanical properties of Ni-based superalloys. Melt superheating treatment can greatly affect the melt structure and redistribution of solute atom in the melt. However, up to date, there are few investigations of the influence of melt superheating treatment on the solute partition coefficient, especially for the new-generation Ni-based single crystal superalloy with additions of Re and Ru. Therefore, in this work, the influence of melt superheating treatment temperature on the solute partition coefficient of a new Ni-based single crystal superalloy with Re and Ru elements under planar solid/liquid (S/L) interface under directional solidification conditions was systematically investigated by using EPMA. It was found that the distribution of solute elements, such as Al, Ta, Ru, Re, W, Co, showed remarkable change in both sides of the S/L interface with increasing melt superheating treatment temperature, but there was little change for the solute elements of Mo and Cr. With increasing the melt superheating treatment temperature, the concentration of solute elements for Al and Ta increased firstly and then decreased, but it showed an opposite trend for Re, W, Ru and Co. Additionally, the change of the solute partition coefficients for Ru, Co, Mo and Cr were small with increasing the melt superheating treatment temperature. The main reasons related to the above changes can be ascribed to that the variation of melt superheating treatment temperature affects the size of the atom clusters in melt, which gives rise to the variation of atomic distribution, and thus leads to the change of solute partition coefficients.

Key words:  melt superheating treatment temperature      solute partition coefficient      solid/liquid interface     
Received:  28 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51331005, 51472200 and 51272211), Aeronautical Science Foundation of China (No.2015ZF53067) and National High Technology Research and Development Program of China (No.2012AA03A511)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00288     OR     https://www.ams.org.cn/EN/Y2016/V52/I4/419

Fig.1  Schematic of melt superheating treatment for Ni-based superalloy (Ts—melt superheating treatment temperature, T0—isothermal static temperature)
Fig.2  Schematic of EPMA analysis for the solute element distribution
Fig.3  EPMA analysis of solute elements at solid/liquid (S/L) interface in Ni-based superalloy
Fig.4  Evolution of concentration of solute elements of Al (a), Ta (b), Re (c), W (d) and Ru (e) in solid and liquid at S/L interface and average concentration of that in quenched liquid with melt superheating treatment temperatures for Ni-based superalloy (CSi—solute composition in solid at S/L interface, CLi—solute composition in liquid at S/L interface, CLiˉ—average solute composition of quenched liquid)
Fig.5  Evolution of solute distribution coefficient (ki) and effective solute distribution coefficient (kieff) of Al (a), Ta (b), Re (c), W (d) and Ru (e) with melt superheating treatment temperature for Ni-based superalloy
Fig.6  Evolution of segregation coefficient (ki') of primary solute elements with melt superheating treatment temperature for Ni-based superalloys
[1] Wollgramm P, Buck H, Neuking K, Parsa A B, Schuwalow S, Rogal J, Drautz R, Eggeler G.Mater Sci Eng, 2015; A628: 382
[2] Wang X G, Liu J L, Jin T, Sun X F, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y.Mater Des, 2015; 67: 544
[3] Tian S G, Wang M G, Li T, Qian B J, Xie J.Mater Sci Eng, 2010; A527: 5445
[4] Pollock T M, Murphy W H.Metall Mater Trans, 1996; 27A: 1088
[5] Gui Z L.Aviation Product Eng, 1995; (4): 12
[5] (桂忠楼. 航空制造工程, 1995; (4): 12)
[6] Stepanova N N, Roddionov D P, Turkham Y E, Sazonova V A, Khlystov E N.J Phys Met Metallogr, 2003; 95: 605
[7] Tyagunov A G, Baryshev E E, Kostina T K, Semenova I P, Lesnikov V P.Met Sci Heat Treat, 1999; 41: 539
[8] Galenko P K, Reutzel S, Herlach D M, Fries S G, Steinbach I, Apel M.Acta Mater, 2009; 57: 6172
[9] Yin F S, Sun X F, Hou G C, Zheng Q, Guan H R, Hu Z Q.Rare Met Mater Eng, 2004; 33: 659
[9] (殷凤仕, 孙晓峰, 侯贵臣, 郑启, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2004; 33: 659)
[10] Zhang J, Li B, Zou M M, Wang C S, Liu L, Fu H Z.J Alloys Compd, 2009; 484: 755
[11] Zou M M, Zhang J, Li B, Liu L, Fu H Z.Int J Mod Phys, 2009; 23B: 1107
[12] Wang Z, Li J G, Zhao N R, Jin T, Zhang J H.Acta Metall Sin, 2002; 38: 922
[12] (王震, 李金国, 赵乃仁, 金涛, 张静华. 金属学报, 2002; 38: 922)
[13] Wang C S, Zhang J, Liu L, Fu H Z.J Alloys Compd, 2010; 508: 443
[14] Reed R C, Tao T, Warnken N.Acta Mater, 2009; 57: 5906
[15] Mao X M, Fu H Z, Shi Z X, Liu H M.Acta Metall Sin, 1983; 19: A246
[15] (毛协民, 傅恒志, 史正兴, 刘惠铭. 金属学报, 1983; 19: A246)
[16] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z.Acta Metall Sin, 2012; 48: 847
[16] (刘刚, 刘林, 张胜霞, 杨初斌, 张军, 傅恒志. 金属学报, 2012; 48: 847)
[17] Liu G, Liu L, Zhao X B, Ge B M, Zhang J, Fu H Z.Metall Mater Trans, 2011; 42A: 2736
[18] Luo Y P, Zhou Y Z, Liu J L.Acta Metall Sin, 2014; 50: 1025
[18] (罗银屏, 周亦胄, 刘金来. 金属学报, 2014; 50: 1025)
[19] Mushongera L T, Fleck M, Kundin J, Wang Y, Emmerich H.Acta Mater, 2015; 93: 66
[20] Yu X X, Wang C Y, Zhang X N, Yan P, Zhang Z.J Alloys Compd, 2014; 582: 301
[21] Ganesan M, Dye D, Lee P D.Metall Mater Trans, 2005; 36A: 2202
[22] Frenkel J.Kinetic Theory of Liquids. New York: Dover Publication Inc, 1955: 93
[23] Sidorov V E, Calvo-Dahlborg M, Dahlborg U, Popel P S, Chernoborodova S.J Mater Sci, 2000; 35: 2257
[24] Yin F S, Guan H R, Sun X F, Hu Z Q.Acta Metall Sin, 2005; 41: 1192
[24] (殷凤仕, 管恒荣, 孙晓峰, 胡壮麒. 金属学报, 2005; 41: 1192 )
[25] Kolotukhin E V, Tjagunov G V.J Mater Process Technol, 1995; 53: 223
[26] Brewer L.In: Walter J L, Jackson M R, Sims C T eds., Chemical Bonding Theory Applied to Metals in Alloying, Metals Park, OH: ASM International, 1988: 5
[27] Murakami H, Saito Y, Harada H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 249
[28] Ofori A, Rossouw C, Humphreys C.Acta Mater, 2005; 53: 97
[29] Yin F S, Sun X F, Li J G, Guan H R, Hu Z Q.Mater Lett, 2003; 57: 3379
[30] Xin T Z, Tang S, Ji F, Ning L K, Zheng Z.J Alloys Compd, 2015; 641: 229
[31] Cai Y W.PhD Dissertation, Northwestern Polytechnical University, Xi'an, 1996
[31] (蔡英文. 西北工业大学博士学位论文, 西安, 1996)
[32] Guo Y G, Li S M, Liu L, Fu H Z.Acta Metall Sin, 2008; 44: 367
[32] (郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 367)
[33] Stefanescu D M.Science and Engineering of Casting Solidification. 2nd Ed., New York: Springer Science+Business Media, LLC, 2009: 174
[1] LI Xiaofei, GUO Xiping. EUTECTIC MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2013, 49(7): 853-862.
[2] SONG Kan ZHANG Jun JIA Xiaojiao SU Haijun LIU Lin FU Hengzhi. MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD[J]. 金属学报, 2012, 48(2): 220-226.
[3] JIN Xiaoli LEI Zuosheng YU Zhan ZHANG Haobin DENG Kang REN Zhongming. PHYSICAL SIMULATION OF Ar BUBBLE BEHAVIOR IN THE SOLID/LIQUID INTERFACE OF CONTINUOUS CASTING BILLET[J]. 金属学报, 2011, 47(6): 763-768.
[4] WANG Yong GUO Xiping. EFFECT OF SOLIDIFYING RATE ON INTEGRALLY DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY OF AN Nb–Ti–Si BASE ALLOY[J]. 金属学报, 2010, 46(4): 506-512.
[5] MIN Zhixian SHEN Jun FENG Zhourong WANG Lingshui LIU Lin FU Hengzhi. STUDY ON PARTITION RATIO AND SEGREGATION BEHAVIOR OF DZ125 ALLOY DURING DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1543-1548.
[6] HE Yongsheng GUO Xiping GUO Haisheng SUN Zhiping. MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY EVOLUTION OF INTEGRALLY DIRECTIONALLY SOLIDIFIED Nb--SILICIDE--BASED ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2009, 45(9): 1035-1041.
[7] Yaohe Zhou. Effect of solute trapping on the growth process in undercooled eutectic melts[J]. 金属学报, 2008, 44(11): 1335-1339 .
[8] SUN LiLing;DONG Lianke;ZHANG Jishan;ZHANG Jinghua;HU Zhuangqi Institute of metal Research; Academia Sinica; Shenyang Institute of Metal Research;Academia Sinica;Shenyang 110015. FRACTAL ANALYSIS OF DIRECTIONAL SOLIDIFICATION BEHAVIOUR OF Ni-BASE SUPERALLOY[J]. 金属学报, 1993, 29(3): 19-24.
No Suggested Reading articles found!