Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 755-760    DOI: 10.11900/0412.1961.2015.00501
Orginal Article Current Issue | Archive | Adv Search |
CHARACTERISTIC TEMPERATURE AND PERFOR-MANCE OF THE Ge30Se70 CHALCOGENIDE GLASS
Tingting JIA,Zengyun JIAN,Junfeng XU,Man ZHU,Fang'e CHANG
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
Cite this article: 

Tingting JIA,Zengyun JIAN,Junfeng XU,Man ZHU,Fang'e CHANG. CHARACTERISTIC TEMPERATURE AND PERFOR-MANCE OF THE Ge30Se70 CHALCOGENIDE GLASS. Acta Metall Sin, 2016, 52(6): 755-760.

Download:  HTML  PDF(635KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Chalcogenide glass is an ideal infrared wave-transparent material, and it has the advantages of low cost, high production efficiency, high glass transition temperature and good mechanical properties, etc.. It is a candidate material for thermal imaging system. The block sample of Ge30Se70 chalcogenide glass was prepared by the method of the melt-quenched. In this work, XRD was used to determine whether the sample was amorphous material. With the DSC thermal analysis method, the glass transition temperature Tg and the initial crystallization temperature Tx of the sample were measured. The dynamics ideal glass transition temperature T0 of the specimen was fitted by VFT equation. The method of segmented step heating is used to analyze the calorific value for the glass and congruent crystal of Ge30Se70 sample in setting temperature range. Then from the calculated calorific values of the glass and crystalline samples, the specific heat capacity relationships were obtained, i.e., cp,l=0.0002T+0.3337 and cp,c=0.00006T+0.4594. The results show that Tg and T0 of Ge30Se70 sample is 590 and 581 K, respectively. And Tg will increase with the increasing of the heating rate R. The average value of the specific heat capacity of the Ge30Se70 glass sample is about 11.8 J/(molK) below the glass transition temperature. The infrared transmittance is about 60% indicating that the infrared performance is good. The glass reduced temperature Trg of Ge30Se70 sample is between 0.5~0.667, and the nucleation rate is very low, which indicates that the glass forming ability of Ge30Se70 glass is good.

Key words:  chalcogenide glass      segmented heating method      glass transition temperature      specific heat capacity     
Received:  25 September 2015     
Fund: Supported by National Basic Research Program of China (No.2013CB632904), National Natural Science Foundation of China (Nos.51371133, 51171136, 51301125 and 51401156), Natural Science Foundation of Shaanxi Province (Nos.2012JM6010 and 2014- JM6225) and Key Laboratory Research Project of Shaanxi Provincial Education Department (No.13JS041)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00501     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/755

Fig.1  XRD spectra of Ge30Se70 glass and crystall samples (Inset shows the morphology of Ge30Se70 glass sample)
Fig.2  Infrared transmission spectrum of Ge30Se70 chalcogenide glass sample

Note: Tp—crystallization peak temperature, Tx—crystallization onset temperature

Fig.3  DSC heat flow curves of the Ge30Se70 glass samples under different heating rates R (Tg—glass transition temperature)
Fig.4  Fitting curve for the Ge30Se70 glass with the VFT equation
Fig.5  DSC curves of the empty crucible, sapphire and Ge30Se70 samples (Ti —onset temperature of the non-isothermal section, Ti+1—end temperature of the non-isothermal section)
R / (Ks-1) Tg / K Tx / K Tp / K
0.083 587 681 691
0.167 590 691 707
0.333 593 701 722
0.667 603 712 746
Table 1  Characteristic temperature of Ge30Se70 samples under different R
Fig.6  Rising up isothermal baseline correction for determination of specific heat capacity (φi''—area of crucible when the temperature is between Ti and Ti+1, φi'—area of sapphire when the temperature is between Ti and Ti+1)
Fig.7  Specific heat capacity as a function of temperature
[1] Wei W H.PhD Dissertation, Chongqing University, 2014
[1] (魏文猴. 重庆大学博士学位论文, 2014)
[2] Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G.Acta Phys Sin, 2011; 60: 084217-1
[2] (宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四, 林常规. 物理学报, 2011; 60: 084217-1)
[3] Jian Z Y, Zheng C, Chang F E, Zhou J, Gao Y S, Lv S Y.J Xi'an Technol Univ, 2009; 29: 52
[3] (坚增运, 郑超, 常芳娥, 周晶, 高玉社, 吕士勇. 西安工业大学学报, 2009; 29: 52)
[4] Xue J Q, Xu M, Gong Y Q, Zhao X J.Optoelectron Technol Inf, 2003; 16(4): 28
[4] (薛建强, 徐曼, 龚跃球, 赵修建. 光电子技术与信息, 2003; 16(4): 28)
[5] Zhang X H.Laser Focus World, 2002; 38: 71
[6] Zhang X H, Guimond Y, Bellec Y.J Non-Cryst Solids, 2003; 326: 519
[7] Yin D M, Dai S X, Wang X S, Xu Y S, Zhang P Q, Lin C G, Shen X.Laser Optoelectron Progr, 2013; 50(2): 92
[7] (尹冬梅, 戴世勋, 王训四, 许银生, 张培晴, 林常规, 沈祥. 激光与光电子学进展, 2013; 50(2): 92)
[8] Burgess T, Ferry M.Mater Today, 2009; 12: 24
[9] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R.Acta Mater, 2004; 52: 1631
[10] Orava J, Greer A L, Gholipour B, Hewak D W, Smith C E.Nat Mater, 2012; 11: 279
[11] Giulia D F, Livio B.Acta Mater, 2013; 61: 2260
[12] Mukherjee S, Schroers J, Johnson W L, Rhim W K. Phys Rev Lett, 2005; 94: 245501
[13] Angell C A.Science, 1995; 267: 1924
[14] Fontana G D, Battezzati L.Acta Mater, 2013; 61: 2260
[15] Tournier R F. Intermetallics, 2012; 30: 104
[16] Turnbull D.Contemp Phys, 1969; 10: 473
[17] Mukherjee S, Schroers J, Johnson W L, Rhim W K.Phys Rev Lett, 2005; 94: 245501
[18] Stillinger F H.J Chem phys, 1988; 88: 7818
[19] Kauzmann W.Chem Rev, 1948; 43: 219
[20] Mei Q S, Lu K.Prog Mater Sci, 2007; 52: 1175
[21] Chen G R, Cheng J J.Bull Chin Ceram Soc, 1997; (4): 63
[21] (陈国荣, 程继健. 硅酸盐通报, 1997; (4): 63)
[22] Zallen R.The Physics of Amorphous Solids. New York: A Wiley-Interscience Publication, 1983: 53
[23] Jiang Q, Xu X Y, Zhao M.Acta Metall Sin, 1997; 33: 763
[23] (蒋青, 徐晓亚, 赵明. 金属学报, 1997; 33: 763)
[24] Turnbull D.Contemp Phys, 1969; 10: 473
[25] Inoue A.Acta Mater, 2000; 48: 279
[26] Vogel H.Physikalische Zeitschrift, 1921; 22: 645
[27] Fulcher G S.J Am Ceram Soc, 1925; 8: 339
[28] Tammann G, Hesse G Z.Anorg Allg Chem, 1926; 156: 245
[29] Flynn J H.Thermochim Acta, 1993; 217: 129
[30] Fan G J, L?ffler J F, Wunderlich R K, Fecht H J.Acta Mater, 2004; 52: 667
[31] Jia R, Bian X F, Wang Y Y.Chin Sci Bull, 2011; 56: 3912
[1] Jiaojiao LI,Zengyun JIAN,Man ZHU,Junfeng XU,Fang'e CHANG,Min XIANG. STUDY ON THERMODYNAMIC PROPERTIES AND KINETICS FRAGILITY OF GexSe90-xSb10 CHALCOGENIDE GLASSES[J]. 金属学报, 2015, 51(11): 1384-1390.
[2] JIANG Qing;XU Xiaoya;ZHAO Ming (Jilin University of Technoloasl; Changchun 130025). RELATIONSHIP BETWEEN VOGELFULCHER LAW AND GLASS TRANSITION TEMPERATURE[J]. 金属学报, 1997, 33(7): 763-768.
[3] SHEN Tao; WANG Jingtang Institute of Metal Research Academia Sinica; Laboratory of Rapidly Solidified Non-Equilibrium Alloys; Shenyang professor. VARIATIONAL CALCULATION OF THERMODYNAMIC PROPERTIES OF SUPERCOOLED LIQUID METALS[J]. 金属学报, 1990, 26(3): 119-125.
No Suggested Reading articles found!