Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1224-1230    DOI: 10.11900/0412.1961.2014.00152
Current Issue | Archive | Adv Search |
STUDY OF THE COARSENING AND HARDENING BEHAVIORS OF COHERENT g-Fe PARTICLES IN Cu-2.1Fe ALLOY
DONG Qiyi, SHEN Leinuo, CAO Feng, JIA Yanlin, WANG Mingpu()
School of Materials Science and Engineering, Central South University, Changsha 410083
Cite this article: 

DONG Qiyi, SHEN Leinuo, CAO Feng, JIA Yanlin, WANG Mingpu. STUDY OF THE COARSENING AND HARDENING BEHAVIORS OF COHERENT g-Fe PARTICLES IN Cu-2.1Fe ALLOY. Acta Metall Sin, 2014, 50(10): 1224-1230.

Download:  HTML  PDF(5724KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one of the most widely used integrated circuit (IC) lead frame materials, Cu-2.1Fe alloy (C19400) shows excellent comprehensive properties, such as 90° bend fatigue, 90° bend formability, corrosion-proof, solder ability and resistance of solder peeling off. As a successful medium-strength and high-conductivity copper alloy, the Cu-2.1Fe alloy is strengthened by precipitation hardening and work hardening. Metastable coherent g-Fe particles will precipitate from supersaturated copper matrix during aging. The effects of long-term aging at different temperatures on the g-Fe coarsening characteristics and the mechanical properties of Cu-2.1Fe alloy were investigated, by means of conventional TEM, SEM, hardness, tensile strength and electrical conductivity testing. The results show that solution-treated Cu-2.1Fe alloys can reach its peak hardness and maintain for a longer time when aging at 500 ℃. The maximum of strength occurred at a particle size of about 12 nm in mean diameter. The coarsening kinetics of g-Fe follows Lifshitz-Slyozov-Wagner (LSW) theory and the activation energy for growth is estimated to 222 kJ/mol. Furthermore, it is found that coherent Fe particles gradually evolve into semi-coherent and cubical particles after aging for a long time and at high temperatures. The aging strengthening effect of Fe particles is not significant, and the maximum increment of stress is about 100 MPa. The strengthening mechanism of undeformed Cu-Fe alloy is coherency strengthening during the under-aged stage and changes to Orowan mechanism during the over-aged stage. Experimental results are in agreement with theoretical predictions.

Key words:  Cu-2.1Fe alloy      coherent particle      coarsening      strengthening theory     
Received:  31 March 2014     
ZTFLH:  TG146.1  
Fund: Supported by Open-End Fund for the Valuable and Precision Instruments of Central South University (No.CSUZC20140012)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00152     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1224

Fig.1  Phase diagram of Cu-Fe alloy[10]
Fig.2  Hardness and electrical conductivity variations of the Cu-2.1Fe alloy with different aging temperatures for 1 h
Fig.3  Hardness (a) and electrical conductivity (b) variations of the Cu-2.1Fe alloy with aging temperatures of 400, 500, 600 and 700 ℃ for different times
Fig.4  TEM images of coherent g-Fe particles in Cu-2.1Fe alloy with aging temperatures of 500 ℃ (a), 600 ℃ (b) and 700 ℃ (c) for 1 h
Fig.5  TEM images of coherent and incoherent Fe particles in Cu-2.1Fe alloy (Insets at the top right corner show the corresponding SAED patterns)
Fig.6  Changes of Fe particle size with aging time at 500~700 ℃
Fig.7  Coarsening plot (a) and the calculation of coarsening active energy of Fe particles (b) in Cu-2.1Fe alloy aged at 500, 600 and 700 ℃
Fig.8  SEM images of fracture micrographs in Cu-2.1Fe alloy for solution treatment (a) and after aging at 500 ℃ for 1 h (b)
Sample sm / MPa s0.2 / MPa Elongation / %
Solution treated 264.0 85.6 46.2
400 ℃, 1 h 270.8 109.2 34.0
500 ℃, 1 h 297.7 138.3 37.8
600 ℃, 1 h 316.0 126.5 38.7
700 ℃, 1 h 322.8 142.4 44.6
700 ℃, 8 h 299.0 116.5 42.4
Table 1  Mechanical properties of Cu-2.1Fe alloy for different aging treatments
Fig.9  Calculated strengthening vs precipitate radius for Cu-2.1Fe alloy (The maximum of tensile stress occurs at r≈b×24=6.12 nm, CS—coherency strengthing, OS—Orowan strengthing, r—average radius, b—Burgers vector, r0-inner cut-off distance for the dislocation line energy)
[1] Song L N, Liu J B, Huang L Y, Zeng Y W, Meng L. Acta Metall Sin, 2012; 48: 1459
(宋鲁南, 刘嘉斌, 黄六一, 曾跃武, 孟 亮. 金属学报, 2012; 48: 1459)
[2] Wu Z W, Liu J J, Chen Y, Meng L. J Alloys Compd, 2009; 467: 213
[3] Dong Q Y, Wang M P, Jia Y L, Chen C, Xia C D. Trans Mater Heat Treat, 2013; 34(6): 75
(董琦祎, 汪明朴, 贾延琳, 陈 畅, 夏承东. 材料热处理学报, 2013; 34(6): 75)
[4] Dai J Y, Yin Z M, Song L P, Yuan Y. Chin J Nonferrous Met, 2009; 19: 1969
(戴娇燕, 尹志民, 宋练鹏, 袁 远. 中国有色金属学报, 2009; 19: 1969)
[5] Cao H, Min J Y, Wu S D, Xian A P, Shang J K. Mater Sci Eng, 2006; A431: 86
[6] Lu D P, Wang J, Zeng W J, Liu Y, Lu L, Sun B D. Mater Sci Eng, 2006; A421: 254
[7] Kim H G, Lee T W, Han S Z, Euh K, Kim W Y, Lim S H. Met Mater Int, 2012; 18: 335
[8] Yan X D, Tu S J, Huang G J, Xie S S. Chin J Rare Met, 2005; 29: 635
(闫晓东, 涂思京, 黄国杰, 谢水生. 稀有金属, 2005; 29: 635)
[9] Shigenori H, Shigeoki S. J Jpn Copper Brass Res Assoc, 1970; 9: 201
(堀茂徳, 佐治重興. 伸銅技術研究會誌, 1970; 9: 201)
[10] Baker H.ASM Handbook-Alloy Phase Diagrams. Materials Park, Ohio: ASM International, 1992: 734
[11] Matsuura K, Tsukamoto M, Watanabe K. Acta Metall, 1973; 21: 1033
[12] Kinsman K R, Sprys J W, Asaro R J. Acta Metall, 1975; 23: 1431
[13] Easterling K E, Miekk-oja H M. Acta Metall, 1967; 15: 1133
[14] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[15] Wagner C. Z Elektrochem, 1961; 65: 581
[16] Mackliet C A. Phys Rev, 1958; 109: 1964
[17] Ardell A J. Metall Trans, 1985; 16A: 2131
[18] Martienssen W, Warlimont H.Springer Handbook of Condensed Matter and Materials Data. Heidelberg, Berlin: Springer, 2005: 132
[19] Lee J, Jung J Y, Lee E S, Park W J, Ahn S, Kim N J. Mater Sci Eng, 2000; A277: 274
[20] Donoso E, Espinoza R, Dianez M J, Criado J M. Mater Sci Eng, 2012; A556: 612
[21] Pang Y, Xia C D, Wang M P, Li Z, Xiao Z, Wei H G, Sheng X F, Jia Y L, Chen C. J Alloys Compd, 2014; 582: 786
[22] Guo M X, Shen K, Wang M P. Acta Mater, 2009; 57: 4568
[1] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[2] Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃[J]. 金属学报, 2018, 54(4): 591-602.
[3] Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL[J]. 金属学报, 2015, 51(5): 553-560.
[4] DI Xinjie, XING Xixue, WANG Baosen. NUCLEATION AND COARSENING MECHANISM OF δ PHASE IN INCONEL 625 DEPOSITED METAL[J]. 金属学报, 2014, 50(3): 323-328.
[5] WANG Xue, YU Shumin, REN Yaoyao, LIU Hong, LIU Hongwei, HU Lei. LAVES PHASE EVOLUTION IN P92 STEEL DURING AGEING[J]. 金属学报, 2014, 50(10): 1195-1202.
[6] TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting, ZHOU Lanzhang. INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2014, 50(10): 1260-1268.
[7] ZHAO Yan, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. A PHASE FIELD STUDY FOR SCALING RULES OF GRAIN COARSENING IN POLYCRYSTALLINE SYSTEM CONTAINING SECOND-PHASE PARTICLES[J]. 金属学报, 2013, 49(8): 981-988.
[8] ZENG Qiang, YAN Ping, SHAO Chong, ZHAO Jingchen, HAN Fengkui,ZHANG Longfei. INVESTIGATION ON COARSENING BEHAVIORS OF SERRATED GRAIN BOUNDARIES IN K480 NICKEL BASE SUPERALLOY DURING LONG TERM AGING AT 900 ℃[J]. 金属学报, 2013, 49(1): 63-70.
[9] ZHOU Guangzhao, WANG Yongxin, CHEN Zheng. PHASE-FIELD METHOD SIMULATION OF THE EFFECT OF ELASTIC STRAIN ENERGY ON COARSENING DYNAMICS DURING THE α2O PHASE TRANSFORMATION IN Ti-Al-Nb ALLOYS[J]. 金属学报, 2012, 48(4): 485-491.
[10] Gong Bo WEN Shengping HUANG Hui NIE Zuoren. EVOLUTION OF NANOSCALE Al3(ZrxEr1-x) PRECIPITATES IN Al-6Mg-0.7Mn-0.1Zr-0.3Er ALLOY ALLOY DURING ANNEALING[J]. 金属学报, 2010, 46(7): 850-856.
[11] WANG Xiaojing ZHU Qingsheng WANG Zhongguang SHANG Jianku. MODELING OF Ag3Sn COARSENING AND ITS EFFECT ON CREEP IN Sn-Ag-Cu SOLDER[J]. 金属学报, 2009, 45(8): 912-918.
[12] JIANG Qingwei LIU Yin WANG Yao CHAO Yuesheng LI Xiaowu . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING[J]. 金属学报, 2009, 45(7): 873-879.
[13] LEI Wenping SHEN Jian MAO Baiping LI Junpeng YAN Liangming. STUDY ON AGING PRECIPITATION BEHAVIOR OF Al–5.2Cu–0.4Mg–1.02Ag ALLOY[J]. 金属学报, 2009, 45(5): 579-584.
[14] LIU Qingdong CHU Yuliang PENG Jianchao LIU Wenqing ZHOU Bangxin. 3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE  III. Coarsening[J]. 金属学报, 2009, 45(11): 1297-1302.
[15] . THE EFFECT OF LONG-TERM AGING ON THE GAMMA PRIME CHARACTERISTICS AND TENSILE PROPERTIES IN Ni-BASE SUPERALLOY K44[J]. 金属学报, 2006, 42(5): 481-486 .
No Suggested Reading articles found!