Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 173-178    DOI: 10.3724/SP.J.1037.2010.00367
论文 Current Issue | Archive | Adv Search |
STUDY ON ELECTROCHEMICAL CODEPOSITION OF Mg-Li-Gd ALLOYS FROM CHLORIDE MELTS
WEI Shuquan1, 2), ZHANG Milin1, HAN Wei1), YAN Yongde1, ZHANG Bin1, 3)
1) Key Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2) College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025
3) Institute of Petrochemistry, HLJ Academy of Sciences, Harbin 150040
Cite this article: 

WEI Shuquan ZHANG Milin HAN Wei YAN Yongde ZHANG Bin. STUDY ON ELECTROCHEMICAL CODEPOSITION OF Mg-Li-Gd ALLOYS FROM CHLORIDE MELTS. Acta Metall Sin, 2011, 47(2): 173-178.

Download:  PDF(1015KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mg-Li-Gd alloys were obtained by electrochemical codeposition method in LiCl-KCl-MgCl2-Gd2O3 molten salt on molybdenum electrode at 1073 K. Transient electrochemical techniques, such as cyclic voltammetry and chronopotentiometry, were used in order to study the reaction mechanism. XRD, SEM, EDS and OM were employed to characterize Mg-Li-Gd alloys. The results suggested that Gd2O3 could dissolve in LiCl-KCl-MgCl2 molten salt while it could not in LiCl-KCl melt. Cyclic voltammograms and chronopotentiometry measurements indicated that the potential of Li metal deposition, after the addition of MgCl2 and Gd2O3, was more positive than the one of Li metal deposition before the addition. The codeposition of Mg, Li and Gd occurred when applied potentials were more negative than -2.30 V (vs. Ag/AgCl) or current densities were higher than 0.776 A/cm2 in LiCl-KCl-MgCl2-Gd2O3. Electrolysis temperature exerted a great influence on current efficiency, 78.87% current efficiency was obtained when electrolysis temperature was 873 K. Li content in Mg-Li-Gd alloys increased with the high current densities. XRD results showed that Mg3Gd intermetallic compounds formed in Mg-Li-Gd alloys. Grain size became smaller as the Gd metal content increased in the alloy. The analysis of SEM and EDS demonstrated that the element of Gd was mainly distributed at grain boundaries.
Key words:  electrochemical codeposition      Mg-Li-Gd alloy      Gd2O3      chloride melt     
Received:  21 July 2010     
Fund: 

Supported by National High Technology Research and Development Program of China (No.2009AA050702), National Natural Science Foundation of China (No.50871033}), Fundamental Research Funds for the Central Universities (No.HEUCF101002) and Scientific Technology Project of Heilongjiang Province (No.GC06A212)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00367     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/173

[1] Crawford P, Barrosa R, Mendez J, Foyos J, Es–said O S. J Mater Process Technol, 1996; 56: 108

[2] Watanable H, Tsutsui H. Int J Plast, 2001; 17: 387

[3] Dong S L, Imai T, Lim SW, Kanetake N, Saito N.J Mater Sci, 2007; 42: 5296

[4] Wang T, Zhang M L, Wu R Z. Mater Lett, 2008; 62: 1846

[5] Chang T C, Wang J Y, Chu C L, Lee S. Mater Lett, 2006; 60: 3272

[6] Xu G X. Rare Earth Elements (part II). Beijing: Metallurgical Industry Press, 1995: 462

(徐光宪. 稀土(下). 北京: 冶金工业出版社, 1995: 462)

[7] Tanno O, Ohuchi K, Matuzawa K. J Jpn Inst Light Met, 1992; 42: 3

[8] Anyanwu I A, Kamado S, Kojima Y. Mater Trans, 2001; 42: 1212

[9] Luo Alan A. Mater Sci Forum, 2003; 419–422(I): 57

[10] Jin G Y, Du W B, Li J H, Wu Y F. J Chin Rare Earth Soc, 2007; 25: 610

(靳广永, 杜文博, 李建辉, 吴玉峰. 中国稀土学报, 2007; 25: 610)

[11] Zhang M L, Yan Y D, Han W, Xue Y, Jing X Y, Liu X L, Wang S S, Zhang X M. Electrochemistry, 2009; 77: 699

[12] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, Wei S Q. Electrochim Acta, 2009; 54: 3387

[13] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, He L Y. J Appl Electrochem, 2009; 39: 455

[14] HanW, Chen Q, Ye K, Yan Y D, ZhangML. Acta Metall Sin (Engl Lett), 2010; 23: 129

[15] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, Jing X Y, He L Y, Yuan Y. Phys Chem Chem Phys, 2009; 11: 6148

[16] Du S L, Wu M H, Du F Y, Liu Y M. Chin Rare Earths, 1987; 2: 59

(杜森林, 吴美煌, 杜富英, 刘英明. 稀土, 1987; 2: 59)

[17] Chu Y L. Master Dissertation, Harbin Engineering University, 2009

(褚衍龙. 哈尔滨工程大学硕士论文, 2009)
[1] YAN Yongde, YANG Xiaonan, ZHANG Milin, WANG Li, XUE Yun, ZHANG Zhijian. STUDY ON PREPARATION OF Al-Li-Gd ALLOYS BY ELECTROCHEMICAL CODEPOSITION FROM CHLORIDE MELTS[J]. 金属学报, 2014, 50(8): 989-994.
[2] LIU Guankun; YANG Qiqin; TONG Yexiang; LIU Qingfeng (Zhongshan University; Guangzhou 510275)(Manuscript received 94-05 -03). STUDY ON FORMATION OF LUTETIUM ALLOYS IN CHLORIDE MELT[J]. 金属学报, 1995, 31(13): 1-9.
[3] GUO Chuntai;FENG Li;DU Senlin;YANG Zhongbao;TANG Dingxiang Changchun Institute of Applied Chemistry; Laboratory of Rare Earth Chemistry and Physics; Academia Sinica Lab.No.22;Changchun Institute of Applied Chemistry; Academia Sinica;Changchun 130022. DISSOLUTION BEHAVIOURS OF La IN KCl-NaCl AND LaCl_3-KCo-NaCl MELTS[J]. 金属学报, 1990, 26(4): 103-107.
No Suggested Reading articles found!