Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1030-1034    DOI:
论文 Current Issue | Archive | Adv Search |
FABRICATION OF FINE-GRAINED Nb-16Si REFRACTORY ALLOY AND ITS SINTER--FORGING WITH SHORT PROCESS
WANG Xiaoli; WANG Guofeng; ZHANG Kaifeng
National Key Laboratory for Precision Heat Processing of Metal; Harbin Institute of Technology; Harbin 150001
Cite this article: 

WANG Xiaoli WANG Guofeng ZHANG Kaifeng. FABRICATION OF FINE-GRAINED Nb-16Si REFRACTORY ALLOY AND ITS SINTER--FORGING WITH SHORT PROCESS. Acta Metall Sin, 2009, 45(9): 1030-1034.

Download:  PDF(1171KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nb--16Si refractory alloy was prepared by mechanical milling and hot--press sintering from high--purity Nb and Si powders. The milling process was carried out in a planetary ball mill for 24 h. The milled powders were consolidated by hot pressing in the argon atmosphere at 30 MPa and 1500 ℃ for 1 h. The powders ball--milled and material hot--pressed were characterized by XRD and SEM. The size of milled particles was refined and the Si atoms were dissolved into the Nb lattice to form interstitial solid solution. The results reveal that Nb--16Si refractory alloy consists of Nb solid solution (Nbss), Nb5Si3, Nb3Si and another Nb solid solution (NbssI) with high Si content. The average grain size is about 2 μm and the grains are nearly equiaxed. The predominant fracture mode is transgranular fracture with river patterns in Nbss and relatively flat cleavage planes in silicides. Nano-hardness values of Nb5Si3, Nb3Si and Nbss determined by nano--indentation are 13.9, 12.7 and 4 GPa, respectively. The fracture toughness of the alloy reaches 10.98 MPa?m1/2, indicating ductile phase toughening plays a positive role in improving the fracture toughness. A model of trust chamber was fabricated by sinter--forging and its microstructure is similar to the hot--pressed material.

Key words:  Nb-16Si refractory alloy      mechanical milling      hot-press      sinter-forging     
Received:  16 February 2009     
ZTFLH: 

TG33

 
Fund: 

Supported by National Natural Science Foundation of China (No.50775052)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1030

[1] Subramanian P R, Mendiratta M G, Dimiduk D M. JOM, 1996; 48(1): 33
[2] Vasud´evan A K, Petrovic J J. Mater Sci Eng, 1992; A155: 1
[3] Mendiratta M G, Lewandowski J J, Dimiduk D M. Metall Trans, 1991; 22A: 1573
[4] Subramanian P R, Parthasarathy T A, Mendiratta M G, Dimiduk D M. Scr Metall, 1995; 32: 1227
[5] Chan K S. Metall Trans, 1996; 27A: 2518
[6] Kim W Y, Tanaka H, Kasama A, Tanaka R, Hanada S. Intermetallics, 2001; 9: 521
[7] Jackson M R, Bewlay B P, Rowe R G, Skelly D W, Lipsitt H A. JOM, 1996; 48(1): 39
[8] Qu S Y, Wang R M, Han Y F. Trans Nonferrous Met Soc Chin, 2002; 12: 691
[9] Kim W Y, Tanaka H, Kasama A, Hanada S. Intermetallics, 2001; 9: 827
[10] Yeh C L, Chen W H. J Alloys Compd, 2006; 425: 216
[11] Yu J L, Zhang K F, Yu J, Wang G F. Acta Metall Sin, 2008; 8: 933
(喻吉良, 张凯锋, 于 杰, 王国峰. 金属学报, 2008; 8: 933)
[12] Yu J L, Zhang K F. Scr Mater, 2008; 59: 714
[13] Ma C L, Kasama A, Tanaka R, Hanada S, Kang M K. Trans Met Heat Treat, 2000; 21(2): 83
(马朝利, 笠间昭夫, 田中良平, 花田修治, 康沫狂. 金属热处理学报, 2000; 21(2): 83)

[14] Zhang D Y, Xiao L Z. Rare Metal Mater Eng, 1985; 15(5): 8
(张德尧, 肖联贞. 稀有金属材料与工程, 1985; 15(5): 8)

[15] Zhang D Y, Xiao L Z. Rare Metal Mater Eng, 1986; 16(1): 10
(张德尧, 肖联贞. 稀有金属材料与工程, 1986; 16(1): 10)

[16] Sutradhar G, Jha A K, Kumar S. J Mater Process Technol, 1994; 41: 143
[17] Park J O, Kim K J, Kang D Y, Lee Y S, Kim Y H. J Mater Process Technol, 2001; 113: 486

[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
No Suggested Reading articles found!