Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1461-1465    DOI:
论文 Current Issue | Archive | Adv Search |
EVALUATION METHOD OF FATIGUE DAMAGE UNDER VARIABLE AMPLITUDE STRESS BASED ON PLASTIC STRAIN
ZHANG Jiwang; LU Liantao; SHEN Xunliang; YI Hongfei; ZHANG Weihua
State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
Cite this article: 

ZHANG Jiwang LU Liantao SHEN Xunliang YI Hongfei ZHANG Weihua. EVALUATION METHOD OF FATIGUE DAMAGE UNDER VARIABLE AMPLITUDE STRESS BASED ON PLASTIC STRAIN. Acta Metall Sin, 2009, 45(12): 1461-1465.

Download:  PDF(1315KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue damage under the stress amplitude below fatigue limit is evaluated based on the modified Miner’s rule usually. The medium carbon railway axle steel shows obvious cyclic softening or hardening behavior during fatigue process. The result of rotary bending fatigue test on medium railway axle steel shows that the stress–life data above the fatigue limit tally with three parameter mode. Therefore the fatigue damage of this steel under variable amplitude stress can’t be evaluated based on the stress linear cumulate damage rule. According to the rotary bending fatigue data obtained from the rotary bending fatigue test under constant and high–low two levels periodic variable amplitude stress, a method oevaluating variable rotary bending fatigue damage of mterial whose icline part of the S–N curve under constant amplitude stress loading is curve, was presented. Considering the cyclic hardening or cyclic softening durig the ftigue process, the stress–life data were transformed to the inear plastic strain–life data according to the cyclic constitutive retionship of this material. Afterward the fatigue damage under varible amplitude stress was evaluated by plastic strain obeying the strain linear cumulate damage rule.

Key words:  variable amplitude stre      cycle constitutive      plastic strin      fatigue damage     
Received:  08 June 2009     
ZTFLH: 

TG111

 
  TG135

 
Fund: 

Supported by National Basic Research Program of China (No.2007C714705) and National Natural Science Foundation of China (Nos.50671086 and 50821063)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1461

[1] Horikawa T, Nakamura H. Fatigue Strength of Metal and Application to Fatigue Strength Design. Tokyo: coronasha, 2008: 100
(中村宏, 堀川武.金属疲劳の基础と疲劳强度设计への型用, 东京: コロナ社, 2008: 100)
[2] Miner M A. J Appl Mech, 1945; 12A(3): 159
[3] Xu H. Fatigue Strength. Beijing: Higher Education Press,188: 90
(徐灏. 疲劳强度. 北京: 高等教育出版社, 1988; 90)
[4] Ren W X, Huang D X. J Chin Railway Soc, 1991; 6(2): 73
(任伟新, 黄大祥. 铁道学报, 1991; 6(2): 73)
[5] Wang L Y, Peng Z Y. Res Explor Lab, 2007; 26: 1990
(王丽英, 彭忠义. 试验室研究与探索, 2007; 26: 1990)
[6] He Z M, Zhao Y X, Yang B, Gao Q, Wu P B. Eng Mech, 2005; 22: 200
(何朝明, 赵永翔, 杨冰, 高庆, 邬平波. 工程力学, 2005; 22: 200)
[7] Zhao Y X, Hang Y Z, Gao Q. J Traffic Transport Eng, 2003; 3(2): 11
(赵永翔, 黄郁仲, 高庆, 交通运输工程学报, 2003; 3(2): 11)
[8] Beretta S, Carboni M. Eng Fract Mech, 2006; 73: 2627
[9] Basquin O H. Proceedings ASTM, 1919; 10(PartII): 625
[10] Weibll W. Fatigue Testing and Analysis of Results. London: Pergamon Press, 1961: 201
[11] Horikawa T, Nakamura H. J Soc Mater Sci, Jpn, 1973; 23(244): 46
(堀川武, 中村宏. 材料, 1974; 23(244): 46)
[12] Manson S S. Syracuse: Syracuse University Press, 1964:133
[13] Zhao Y X, Yang B, Sun Y F, Gao Q. Chin J Mech Eng, 2004; 40(9): 48
(赵永翔, 杨冰, 孙亚芳, 高庆. 机械工程学报, 2004; 40(9): 48)
[14] Kikukawa M, Ohji K, Kamata T, Jono M. J Jpn Soc Mech Eng, 1967; 70(585): 1495
(菊川真, 大路清嗣, 濂田敬雄, 城野政弘.日本机械学会志, 1967; 70(585): 1495)

[1] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[2] ZHANG Guangping; TAKASHIMA Kazuki; HIGO Yakichi. Size Effects On Deformation And Fatigue Behavior Of A Micron-Sized Stainless Steel[J]. 金属学报, 2005, 41(4): 337-341 .
[3] ZHANG Guangping; WANG Zhongguang. Progress in Fatigue of Small Dimensional Materials[J]. 金属学报, 2005, 41(1): 1-8 .
[4] WANG Mingzhang; LIN Shi; LI Jinxu; GUAN Jingjiao; XIAO Jimei (University of Science and Technology Beijing; Beijing 100083). FATIGUE DAMAGE AND CRACK INITIATION IN [112] ALUMINUM SINGLE CRYSTAL[J]. 金属学报, 1997, 33(10): 1015-1020.
[5] WANG Mingzhang;LIN Shi;XIAO Jimei(University of Science and Technology Beijing;Beijing 100083)(Departiment of Material Physics;University of Science and Technology Beijing;Beijing 100083)(Manuscript received 1996-01-18;in revised form 1996-06-20). DEFORMATION AND DAMAGE AT GRAIN BOUNDARY ON FATIGUED ALUMINUM BICRYSTALS[J]. 金属学报, 1996, 32(10): 1049-1055.
[6] ZHANG Guangping; ZANG Qishan; WANG Zhongguang(State Key Laboratory for Fracture and Fatigue of Materials;Institute of Metal Research; Chinese Academy of Sciences Shenyang 110015)(Manuscript received 1994-08-06; in revised form 1995-06-09). GROWTH BEHAVIOUR OF SHORT CRACK AND FATIGUE DAMAGE UNDER SPECTRUM LOADING[J]. 金属学报, 1995, 31(10): 479-484.
[7] TUNG Xiaoyan;WANG Dejun;XU Hao Northweestern Polytechnical University; Xi'an; Northeast University of Technology; Shenyang. HEAT ENERGY DISSIPATION IN FATIGUE DAMAGE PROCESS OF MATERIALS[J]. 金属学报, 1992, 28(4): 21-27.
[8] TONG Xiaoyan TUNG Xiaoyan Northwestern Polytechnical University; Xi'an; WANG Dejun;XU Hao Northeast University of Technology; Shenyang. INFRARED DETECTION OF SELF-HEATING PROCESS DURING LOW CYCLE FATIGUE DAMAGE[J]. 金属学报, 1991, 27(2): 71-74.
[9] ZHAI Tongguang;LIN Shi;PAN Hu;XIAO Jimei University of Science and Technology Beijing. INFLUENCE OF PHYSICAL DAMAGE EFFECT OF PSB ON CRACK INITIATION IN Al SINGLE CRYSTAL[J]. 金属学报, 1991, 27(1): 32-38.
No Suggested Reading articles found!