Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 97-101    DOI:
论文 Current Issue | Archive | Adv Search |
NEGATIVE THERMAL EXPANSION PHENOMENA\par OF Mn3(Cu1-xGexN
ZHANG Congyang; ZHU Jie; ZHANG Maocai
State Key Laboratory of Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

ZHANG Congyang ZHU Jie ZHANG Maocai. NEGATIVE THERMAL EXPANSION PHENOMENA\par OF Mn3(Cu1-xGexN. Acta Metall Sin, 2009, 45(1): 97-101.

Download:  PDF(765KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The metallic nitrides Mn3(Cu1-xGex)N were prepared by solid-state sintering in the pure nitrogen atmosphere at 1073 K. The X-ray diffraction analysis shows that all of the sintered polycrystalline samples present an antiperovskite structure of Mn3CuN phase. The linear thermal expansions of compounds Mn3(Cu1-xGex)N (0.40≦x≦0.60) measured by using Michelson interferometer, exhibited negative thermal expansion near Neel temperature. With increase in the content of Ge, the temperature at which the negative thermal expansion occurred increases while the temperature range widens, but the thermal expansion coefficient decreases. The sample with x=0.60 presents negative thermal expansion in the region of 250-290 K (around 273 K), the linear expansion coefficient can reach to -65×10-6 K-1, shows a potential for practical application. The temperature dependence of the magnetization indicates that the negative thermal expansion behavior of Mn3(Cu1-xGex)N compounds occurs in the gradual transition from antiferromagnetic to paramagnetic state. The negative thermal expansion is caused by magnetovolume effect, originating from magnetic spin order disappearance and magnetic moment decrease near the Neel temperature.

Key words:  negative thermal expansion      antiperovskite structure      solid--state sintering      magnetic transition     
Received:  30 June 2008     
ZTFLH: 

TG113.22

 
  O614.7  
  O613.61

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/97

[1] Salvador J R, Guo F, Hogan T, Kanatzidis M G. Nature, 2003; 425: 702
[2] Sleight A W. Nature, 2003; 425: 674
[3] Mary T A, Evans J S O, Vogt T, Sleight A W. Science, 1996; 272: 90
[4] Sleight A W. Inorg Chem, 1998; 37: 2584
[5] Schilfgaarde V M, Abrikosov I A, Johansson B. Nature, 1999; 400: 46
[6] Hausch G, Bacher R, Hartmann J. Physica, 1989; 161B: 22
[7] Fruchart D, Bertaut E F. J Phys Soc Jpn, 1978; 44: 781
[8] L′Heritier Ph, Boursier D, Fruchart R, Fruchart D. Mater Res Bull, 1979; 14: 1203
[9] L′Heritier Ph, Fruchart D, Madar R, Fruchart R. Mater Res Bull, 1979; 14: 1089
[10] Fruchart D, L′Heritier Ph, Fruchart R. Mater Res Bull, 1979; 15: 415
[11] Chi E O, Kim W S, Hur N H. Solid State Commun, 2001; 120: 307
[12] Kim W S, Chi E O, J C Kim, Hur N H, Lee K W, Chio Y N. Phys Rev, 2003; 68B: 172402
[13] Garcia J, Bartolome J, Gonzalez D, Navarro R, Fruchart D. J Chem Thermodyn, 1983; 15: 1041
[14] Takenaka K, Takagi H. Appl Phys Lett, 2005; 87: 261902
[15] Takenaka K, Takagi H. Mater Trans, 2006; 47: 471
[16] Ding J H, Cui Y S, Wu M J. The Theory and Application of Laser. Beijing: Tsinghua University Press, 1987: 179
(丁俊华, 崔砚生, 吴美娟. 激光原理及应用. 北京: 清华大学出版社, 1987: 179)
[17] Iikubo S, Kodama K, Takenaka K, Takagi H, Shamoto S. Phys Rev, 2008; 77B: 020409
[18] Moruzzi V L. Phys Rev Lett, 1986; 57: 2211

[1] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[2] SONG Xiaoyan SUN Zhonghua. REVIEW IN ANTIPEROVSKITE MANGANESE NITRIDES WITH NEGATIVE THERMAL EXPANSION PROPERTIES[J]. 金属学报, 2011, 47(11): 1362-1371.
[3] XING Qifeng; XING Xianran; DU Ling; YU Ranbo; CHEN Jun; DENG Jinxia; LUO Jun. Hydrothermal Synthesis of Negative Thermal Expansion Material ZrW2O8[J]. 金属学报, 2005, 41(6): 669-672 .
No Suggested Reading articles found!