Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 119-123    DOI:
论文 Current Issue | Archive | Adv Search |
DIMENSIONAL STABILITY OF 2D Cf/Mg--2.0Re--0.2Zr COMPOSITES
SONG Meihui 1;SONG Jian2;CHEN Guoqin1;WANG Ning1; WU Gaohui1
1 College of Material Science & Engineering; Harbin Institute of Technology; Harbin 150001
2 Research and Development Department; Chinese Academy of Space Technology; Beijing 100094
Cite this article: 

SONG Meihui SONG Jian CHEN Guoqin WANG Ning WU Gaohui. DIMENSIONAL STABILITY OF 2D Cf/Mg--2.0Re--0.2Zr COMPOSITES. Acta Metall Sin, 2009, 45(1): 119-123.

Download:  PDF(841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal expansion behaviors of carbon fabric/Mg-2.0Re-0.2Zr (2D) and carbon fabric/Mg-2.0Re-0.2Zr (1D) composites fabricated by squeeze casting technology were measured, and the results show that the anisotropy is obviously improved by using carbon fabric. Coefficient of thermal expansion (CTEs) of 0°/90° of 2D composite between 50 and 350 ℃ changes from 4.03×10-6-1 to 1.83×10-6-1, and the 45° CTEs decrease from 4.53×10-6-1 to 2.31×10-6-1. CTEs of  0°/90°of 2D composite between 20 and 150 ℃ are in a good agreement with the model derived by the authors. Dimensional stabilities of composites were evaluated by thermal cycling method between 20 to 150 ℃. Strain hysteresis of 2D composite is observed during thermal cycling, and residual stain is mainly matrix plastic deformation generated by thermal stress. The net strain shows little change with increasing cycling number, which demonstrated 2D composite has good dimensional  stability.

Key words:  carbon fabric/Mg-2.0Re-0.2Zr alloy composite      thermal expansion      dimensional stability     
Received:  21 April 2008     
ZTFLH: 

TB331

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/119

[1] Li K, Pei Z L, Gong J, Shi N L, Sun C. Acta Metall Sin, 2007; 43: 1281
(李坤, 裴志亮, 宫骏, 石南林, 孙超. 金属学报, 2007; 43: 1281)
[2] Goddard D M. Trans Am Foundrymen′s Soc, 1986; 94: 667
[3] Degischer H P. Mater Des, 1997; 18: 221
[4] Armin F, Eckhard P, J¨org W. Adv Eng Mater, 2002; 2:471
[5] Goddard D M. Met Prog, 1984; 125: 49
[6] Carolin K, Wolgang S, Markus O, Robert F S. Adv Eng Mater, 2000; 6: 327
[7] Wu F, Zhu J. Acta Metall Sin, 1998; 34: 449
(武凤, 朱静. 金属学报, 1998; 34: 449)
[8] Hufenbach W, Andrich M, Langkamp A, Czulak A. J Mater Process Technol, 2006; 175: 218
[9] Russell S M, Todd R, Papakyriacou M. Surf Interface Anal, 2005; 37: 336
[10] Russell S M, Todd R, Papakyriacou M. Mater Sci Eng, 2005; A397: 249
[11] McCartney L N, Kelly A. Compos Sci Technol, 2007; 67: 646
[12] Kor´ab J, ˇStef´anik P, Kavecky ˇS, ˇSebo P, Korb G. Composites, 2002; 33A: 133
[13] ˇ Stef´anik P, Kavecky ˇ S, Korb G, Groboth G, ˇ Sebo P. J Mater Sci Lett, 1997; 16: 392
[14] Wolff E G, Min B K, Kural M H. J Mater Sci, 1985; 20: 1141
[15] Russell S M, Todd R I, Papakyriacou M. J Mater Sci, 2006; 41: 6228
[16] Korb G, Kor´ab J, Groboth G. Composites, 1998; 29A: 1563
[17] Wang H H, Li X G, Fei Z M. Aerosp Mater Technol, 1995; 25(1): 41
(王鸿华, 李贤淦, 费铸铭. 宇航材料工艺, 1995; 25(1): 41)
[18] Taylor R E. Int J Thermophys, 1991; 12: 723
[19] Hufenbach W, Andrich M, Langkamp A, Czulak A. J Mater Process Technol, 2006; 175: 218
[20] Rupnowski P, Gentz M, Sutter J K, Kumosa M. Composites, 2005; 36A: 327
[21] Wang N. Master Degree Dissertation, Harbin Institute of Technology, 2007
(王 \ \ 宁. 哈尔滨工业大学硕士学位论文, 2007)
[22] Rojstaczer S, Cohn D, Marom G. J Mater Sci Lett, 1985; 4: 1233
[23] Rajendra U, Chawla K K. Compos Sci Technol, 1994; 50: 13
[24] Karadeniz Z H, Kumlutas D. Compos Struct, 2007; 78: 1
[25] Kelly A, Stearn R J, McCartney L N. Compos Sci Technol, 2006; 66: 154
[26] Zhang Q, Wu G H, Jiang L T, Chen G Q. Mater Chem Phys, 2003; 81: 780

[1] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
[2] Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites[J]. 金属学报, 2019, 55(1): 33-44.
[3] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[4] SONG Xiaoyan SUN Zhonghua. REVIEW IN ANTIPEROVSKITE MANGANESE NITRIDES WITH NEGATIVE THERMAL EXPANSION PROPERTIES[J]. 金属学报, 2011, 47(11): 1362-1371.
[5] ZHANG Congyang ZHU Jie ZHANG Maocai. NEGATIVE THERMAL EXPANSION PHENOMENA\par OF Mn3(Cu1-xGexN[J]. 金属学报, 2009, 45(1): 97-101.
[6] XING Qifeng; XING Xianran; DU Ling; YU Ranbo; CHEN Jun; DENG Jinxia; LUO Jun. Hydrothermal Synthesis of Negative Thermal Expansion Material ZrW2O8[J]. 金属学报, 2005, 41(6): 669-672 .
[7] FENG Yi;YING Meifang;WEI Guangxia;ZHANG Xiaojun;WANG Chengfu (Hefei Universily of Technology). RELATION BETWEEN THERMAL EXPANSION COEFFICIENTS OF C_F / Cu COMPOSITES AND DISTRIBUTION OF FIBRES[J]. 金属学报, 1994, 30(21): 432-434.
[8] LU Zhichao; XIANYU Ze (Department of Physics; Northeastern University;Shenyang)SHEN Baogen((Institute of Physics; Chinese Academy of Scicnces;Beijing)LU Manqi(Institute of Metal Research; Chinese Academy of Sciences;Shenyang). THERMAL EXPANSION AND MAGNETIC PROPERTIES OF NANOCRYSTALLINE Fe-Zr-B ALLOYS[J]. 金属学报, 1994, 30(18): 265-269.
[9] TONG Huayu;DING Bingzhe;JIANG Honggang;LI Shuling;LI Gusong;WANG Jingtang State Key Laboratory of RSA; Institute of Metal Research; Academia Sinica; Shenyang Correspondent Research assistant; Institute of Metal Research; Academia Sinica; Shenyang 110015. THERMAL PROPERTIES OF NANOCRYSTALLINE Fe_(78)B_(13)Si_9 ALLOY[J]. 金属学报, 1992, 28(6): 71-75.
[10] LU Jian;WANG Jingtang;DING Bingzhe Institute of Metal Research; Academia Sinica; Shenyang. EFFECT OF PREPARATION CONDITION ON THERMAL EXPANSION ANISOTROPY FOR AMORPHOUS Fe_(78)B_(13)Si_9 ALLOY[J]. 金属学报, 1989, 25(3): 102-106.
No Suggested Reading articles found!