Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (6): 584-590     DOI:
Research Articles Current Issue | Archive | Adv Search |
MODELLING THE THERMO-SOLUTAL CONVECTION, SHRINKAGE FLOW AND GRAIN MOVEMENT DURING GLOBULAR EQUIAXED SOLIDIFICATION IN A MULTI-PHASE SYSTEM I.THREE-PHASE MODEL
Tongmin Wang
大连理工大学
Cite this article: 

Tongmin Wang. MODELLING THE THERMO-SOLUTAL CONVECTION, SHRINKAGE FLOW AND GRAIN MOVEMENT DURING GLOBULAR EQUIAXED SOLIDIFICATION IN A MULTI-PHASE SYSTEM I.THREE-PHASE MODEL. Acta Metall Sin, 2006, 42(6): 584-590 .

Download:  PDF(299KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A three-phase flow model has been developed to simulate globular equiaxed solidification based on the volume averaging and Eulerian- Eulerian methods. The three phases are liquid, solid and air respectively sharing a single pressure. The basic conservation equations of mass, momentum and enthalpy, and a user defined conservation equation of grain density have been solved for each phase. The thermal and mechanical (drag force) interactions among the phases have been considered. Grain nucleation, growth rate (mass exchange), solute partitioning at the liquid/solid interface and solute transport have also been accounted for. Due to the low density, the air phase floats always at the top region, forming a definable air/liquid melt interface, i.e. free surface. By tracking this free surface, the shrinkage cavity in an open casting system can be modeled. As the temperature and concentration dependent density and solidification shrinkage are explicitly included, the thermosolutal convection, together with feeding flow and grain movement can be taken into account. This paper focuses on the model description and the application examples will be introduced in the part II of this paper.
Key words:  Thermo-Solutal Convection      Feeding Flow      Grain Movement      
Received:  29 September 2005     
ZTFLH:  TG249, TG291  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I6/584

[1] Ohno A. Solidification-The Separation Theory and its Practical Applications. Berlin: Springer-Verlag, 1987: 15
[2] Flemings M C. Solidification Processing. New York: McGraw-Hill, 1974: 1
[3] Campbell J. Castings. Oxford: Butterworth-Heinemann, 1991: 8
[4] Kaempfer Th U, Rappaz M. In: Sahm P R, ed., Proc 9th Conf on Modeling of Casting, Welding and Advanced Solidification Processes, Aachen, TMS, 2000: 640
[5] Ueno K, Nishita T, Kamiyama H . J Magn Magn Mater, 1999; 201: 281
[6] Ehlen G. PhD Thesis, Aachen University of Technology, Aachen, Germany, 2004
[7] Tagawa T. ISIJ Int, 2005, 45: 954
[8] Ni J, Beckermann C. Metall Trans, 1991; 22B: 349
[9] Beckermann C, Viskanta R. Appl Mech Rev, 1993; 46(1): 1
[10] Wang C Y, Beckermann C. Metall Mater Trans, 1996; 27A: 2754
[11] Beckermann C. Int Mater Rev, 2002; 47: 243
[12] Wang C Y, Ahuja S, Beckermann C, Degroh H C. Metall Mater Trans, 1995; 26B: 111
[13] Wu M, Ludwig A. Adv Eng Mater, 2003; 5: 62
[14] Wu M, Ludwig A, Buhrig-Polaczek A, Fehlbier M, Sahm P R. Int J Heat Mass Transf, 2003; 46: 2819
[15] Ludwig A, Wu M, Wang T, Buhrig-Polaczek A. Proc 3rd Conf on Computational Modeling and Simulation of Materials, Sicily, TMS, 2004: B491
[16] Ludwig A, Wu M. Metall Mater Trans, 2002; 33A: 3673
[17] Wang T, Pustal B, Abondano M, Grimmig T, Buhrig-Polaczek A, Wu M, Ludwig A. Trans Nonferrous Met Soc Chin, 2005; 15: 289
[18] Wang T M, Wu M, Ludwig A, Abondano M, Pustal B, Buhrig-Polaczek A. Int J Cast Met Res, 2005; 18: 221
[19] Rappaz M, Gandin Ch-A. Ada Metall Mater, 1993; 41: 345
[20] Kurz W, Fisher D J. Fundamentals Solidification. Lausanne: Trans Tech Publications Ltd, 1985: 189
[21] Ilegbusi O J, Mat M D. Mater Sci Eng, 1998; A247: 135
[22] FLUENT4.4 User's Guide. Vol.2, Chapter 9, New Hampshire: Fluent Inc., 1998: 16
[23] Wang T M, Li T J, Cao Z Q, Jin J Z, Grimmig T, Buhrig-Polaczek A, Wu M, Ludwig A. Acta Metall Sin, 2006; 42: 591 (王同敏,李廷举,曹志强,金俊泽, Grimmig T,Buhrig Polaczek A,Wu M,Ludwig A.金属学报,2006;42:591)
[1] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[2] Jun LI,Honghao GE,Menghuai WU,Andreas LUDWIG,Jianguo LI. A COLUMNAR & NON-GLOBULAR EQUIAXED MIXED THREE-PHASE MODEL BASED ON THERMOSOLUTAL CONVECTION AND GRAIN MOVEMENT[J]. 金属学报, 2016, 52(9): 1096-1104.
No Suggested Reading articles found!